Critical Configuration and Physics Measurements for Assemblies of U(93.15)O₂ Fuel Rods (1.506-cm Pitch)

Margaret Marshall John D. Bess J. Blair Briggs Michael F. Murphy John T. Mihalczo

March 2013

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Critical Configuration and Physics Measurements for Assemblies of U(93.15)O₂ Fuel Rods (1.506-cm Pitch)

Margaret A. Marshall³
John D. Bess
J. Blair Briggs
Michael F. Murphy¹
John T. Mihalczo²

¹Under Subcontract to the OECD NEA ²Oak Ridge National Laboratory ³Idaho National Laboratory/University of Idaho

March 2013

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of National Nuclear Security Administration
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR ASSEMBLIES OF U(93.15)O₂ FUEL RODS (1.506-CM PITCH)

Evaluator

Margaret A. Marshall Idaho National Laboratory/University of Idaho

Internal Reviewers

John D. Bess J. Blair Briggs Idaho National Laboratory

Independent Reviewers

Michael F. Murphy
Under Subcontract to the OECD NEA

John T. Mihalczo
Oak Ridge National Laboratory

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Status of Compilation/Evaluation/Peer Review

	Section 1	Compiled	Independent Review	Working Group Review	Approved
1.0	DETAILED DESCRIPTION				
1.1	Description of the Critical and/or Subcritical Configuration	YES	YES	YES	YES
1.2	Description of Buckling and Extrapolation Length Measurements	NA	NA	NA	NA
1.3	Description of Spectral Characteristics Measurements	YES	YES	YES	YES
1.4	Description of Reactivity Effects Measurements	YES	YES	YES	YES
1.5	Description of Reactivity Coefficient Measurements	NA	NA	NA	NA
1.6	Description of Kinetics Measurements	NA	NA	NA	NA
1.7	Description of Reaction-Rate Distribution Measurements	YES	YES	YES	YES
1.8	Description of Power Distribution Measurements	NA	NA	NA	NA
1.9	Description of Isotopic Measurements	NA	NA	NA	NA
1.10	Description of Other Miscellaneous Types of Measurements	NA	NA	NA	NA
	Section 2	Evaluated	Independent Review	Working Group Review	Approved
2.0	EVALUATION OF EXPERIMENTAL DATA				
2.1	Evaluation of Critical and/or Subcritical Configuration Data	YES	YES	YES	YES
2.2	Evaluation of Buckling and Extrapolation-Length Data	NA	NA	NA	NA
2.3	Evaluation of Spectral Characteristics Data	YES	YES	YES	YES
2.4	Evaluation of Reactivity Effects Data	YES	YES	YES	YES
2.5	Evaluation of Reactivity Coefficient Data	NA	NA	NA	NA
2.6	Evaluation of Kinetics Measurements Data	NA	NA	NA	NA
	Evaluation of Reaction-Rate	YES	YES	YES	YES
2.7	Distributions				
2.7		NA	NA	NA	NA
	Distributions		NA NA	NA NA	NA NA

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

	Section 3	Compiled	Independent Review	Working Group Review	Approved
3.0	BENCHMARK SPECIFICATIONS				
3.1	Benchmark-Model Specifications for Critical and / or Subcritical Measurements	YES	YES	YES	YES
3.2	Benchmark-Model Specifications for Buckling and Extrapolation Length Measurements	NA	NA	NA	NA
3.3	Benchmark-Model Specifications for Spectral Characteristics Measurements	YES	YES	YES	YES
3.4	Benchmark-Model Specifications for Reactivity Effects Measurements	YES	YES	YES	YES
3.5	Benchmark-Model Specifications for Reactivity Coefficient Measurements	NA	NA	NA	NA
3.6	Benchmark-Model Specifications for Kinetics Measurements	NA	NA	NA	NA
3.7	Benchmark-Model Specifications for Reaction-Rate Distribution Measurements	YES	YES	YES	YES
3.8	Benchmark-Model Specifications for Power Distribution Measurements	NA	NA	NA	NA
3.9	Benchmark-Model Specifications for Isotopic Measurements	NA	NA	NA	NA
3.10	Benchmark-Model Specifications of Other Miscellaneous Types of Measurements	NA	NA	NA	NA
	Section 4	Compiled	Independent Review	Working Group Review	Approved
4.0	RESULTS OF SAMPLE CALCULATIONS				
4.1	Results of Calculations of the Critical or Subcritical Configurations	YES	YES	YES	YES
4.2	Results of Buckling and Extrapolation Length Calculations	NA	NA	NA	NA
4.3	Results of Spectral Characteristics Calculations	YES	YES	YES	YES
4.4	Results of Reactivity Effect Calculations	YES	YES	YES	YES
4.5	Results of Reactivity Coefficient Calculations	NA	NA	NA	NA
4.6	Results of Kinetics Parameter Calculations	NA	NA	NA	NA
4.7	Results of Reaction-Rate Distribution Calculations	YES	YES	YES	YES
4.8	Results of Power Distribution Calculations	NA	NA	NA	NA
4.9	Results of Isotopic Calculations	NA	NA	NA	NA
4.10	Results of Calculations of Other Miscellaneous Types of Measurements	NA	NA	NA	NA
	Section 5	Compiled	Independent Review	Working Group Review	Approved
5.0	REFERENCES	YES	YES	YES	YES
	endix A: Computer Codes, Cross Sections, and cal Input Listings	YES	YES	YES	YES

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR ASSEMBLIES OF U(93.15)O₂ FUEL RODS (1.506-CM PITCH)

IDENTIFICATION NUMBER: SCCA-SPACE-EXP-002

CRIT-SPEC-REAC-RRATE

KEY WORDS: 1.506-cm pitch, 7-tube clusters, acceptable, assembly critical experiments, beryllium-

reflected, cadmium ratios, dioxide, fuel rods, highly enriched, medium power reactor experiment, small modular reactor, space reactor, reactivity worth measurements,

unmoderated, uranium

SUMMARY INFORMATION

1.0 DETAILED DESCRIPTION

A series of small, compact critical assemblies (SCCA) experiments were completed from 1962–1965 at Oak Ridge National Laboratory's (ORNL's) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study "power plants for the production of electrical power in space vehicles." The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1962 through 1966. A summary of the program's effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods.

Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO₂ fuel pellets, surrounded by a graphite reflector. Measurements were performed to determine critical reflector arrangements, relative fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. "The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector" (see Reference 1). The experiment studied in this evaluation was the second of the series and had the fuel rods in a 1.506-cm-triangular pitch. One critical configuration was found (see Reference 3). Once the critical configuration had been achieved, various measurements of reactivity, relative axial and radial activation rates of ²³⁵U, ^{bc} and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configuration are described in Sections 1.3, 1.4, and 1.7, respectively.

Information for this evaluation was compiled from References 1 through 5, from the experimental logbook, and from communication with the experimenter, John T. Mihalczo.

Revision: 0

Date: March 31, 2013 Page 1 of 67

^a A. P. Fraas, "Summary of the MPRE Design and Development Program," ORNL-4048, Oak Ridge National Laboratory (1967).

What was referred to as the fission rates in References 1, 2 and 3 are induced fissions in a uranium fission counter for the axial measurements and relative activation of ²³⁵U fission foils for the radial measurements (see Section 1.7.1). (Personal communication with J.T. Mihalczo, September 19, 2011).

^c Axial measurements in the core were made to determine the axial power density distribution.

Radiation Safety Information Computation Center (RSICC), The ORNL Critical Experiments Logbooks, Book 75r, http://rsicc.ornl.gov/RelatedLinks.aspx?t=criticallist, logbook page 63-77.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

1.1 Description of the Critical and/or Subcritical Configuration

(The criticality portion of this evaluation has been reviewed and approved by the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and has been published under the following identifier: HEU-COMP-FAST-002.^a)

1.2 Description of Buckling and Extrapolation Length Measurements

Buckling and extrapolation-length measurements were not made.

1.3 Description of Spectral Characteristics Measurements

1.3.1 Overview of Experiment

Cadmium ratios were measured with enriched uranium metal foils through the lower section of the radial reflector and are described in the following subsections. The cadmium ratio measurements have been judged to be acceptable as benchmark experiments.

1.3.2 Geometry of the Experiment Configuration and Measurement Procedure

The experiment configuration was the same as the critical configuration described in HEU-COMP-FAST-002. The 1.27-cm-diameter radial holes in the lower side reflector, located 7.63 cm below the midplane of the core, were used for the cadmium ratio measurements. The experimenter inserted 0.75-cm-diameter × 0.010-cm-thick 93.15 wt.%-²³⁵U-enriched uranium metal foils,^b some with 0.051-cm-thick cadmium covers and some without, into the radial holes in the side reflector by placing them between sections of graphite plugs. One part of the cadmium cover was cup-shaped and the uranium foil fit tightly into the cup. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. The outside diameter of the cadmium cover was 0.85 cm. A drawing of a HEU metal foil and the cadmium cover is given in Figure 1.3-1.^c According to the logbook five bare foils were distributed through two radial holes to maximize distance between the foils and five covered foils were distributed through two different radial holes, again to maximize distance between the foils.

Figure 1.3-1. HEU Metal Foil and Cadmium Cover.

Revision: 0

Date: March 31, 2013 Page 2 of 67

^a International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD-NEA, Paris (2012).

References 1 and 2 report the foil enrichment as 93.2 wt.%, but according to the experimenter, it was 93.15 wt.% (September 19, 2011).

^c Personal communication with J.T. Mihalczo, August 14, 2012 and November 9, 2012.

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Uranium foils were selected from hundreds of identical foils "according to their activity when exposed to the same neutron flux." Corresponding bare and covered foils were "the same foil to less than 1% for activation in the same neutron flux for the same time." a The activation of the uranium metal foils was measured after removal from the assembly using two lead-shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fissionproduct gamma rays with energies above 250 keV, within 5 %. All foils were counted for at least 100,000 counts. The measurement uncertainty would have been 0.5 %. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one NaI scintillator and the other foil on the other NaI detector and the activities measured simultaneously. The activation of a particular foil was compared to that of the normalization foil by dividing the count rate for each foil by that of the normalization foil. To correct for the differing efficiencies of the two NaI detectors, the normalization foil was counted in Detector 1 simultaneously with the foil at position x in Detector 2, and then the normalization foil was counted simultaneously in Detector 2 with the foil from position x in Counter 1. The activity of the foil from position x was divided by the activity of the normalization foil counted simultaneously. This resulted in two values of the ratio that were then averaged. This procedure essentially removed the effect of the differing efficiencies of the two NaI detectors. Differing efficiencies of 10% resulted in errors in the ratios measured to less than 1%. The background counting rates obtained with the foils used for the measurements on the NaI detectors before their irradiation measurement were subtracted from all count rates. c The results of the cadmium ratio measurements are given in Table 1.3-1 and Figure 1.3-2. "No correction has been made for self shielding in the foils" (Reference 3).

Table 1.3-1. Radial Cadmium Ratio (see Reference 3).

Distance from Core ^(a) (cm)	Cadmium Ratio ^(b)
0.5	2.97
6.0	4.91
12.0	6.01
18.0	6.60
24.0	7.67

- (a) Reported as measured from the core-reflector interface; no additional information was given.
- (b) The cadmium ratio is defined as the ratio of the bare-to-cadmium-covered foil activity.

Revision: 0

Date: March 31, 2013 Page 3 of 67

^a Personal communication with J.T. Mihalczo, November 9, 2012.

b Personal communication with J.T. Mihalczo, August 15, 2012.

^c Personal email communication with J. T. Mihalczo, September 27, 2011, and November 23, 2011. The experimenter believes a 250-KeV threshold was used "so as to not count the natural activity of the uranium foils" (November 14, 2011).

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure 1.3-2. Plot of Relative Radial Activation of ²³⁵U Fission Foils (see Section 1.7) and Cadmium Ratios in the Radial Reflector (see Reference 3).

1.3.3 Material Data

Material data for the core and reflector parts are the same as those given for the critical configuration (see HEU-COMP-FAST-002).

The uranium foils were 93.15 wt.% ²³⁵U enriched. No impurity data were given for the uranium in the published reports or the logbooks but, according to the experimenter, the impurity content of the uranium foil was similar to that for the uranium metal described in HEU-MET-FAST-051.^a No material data for the cadmium foils were given.

1.3.4 Temperature Data

The temperature is the same as for the critical configuration, 72°F (22°C).^b

1.3.5 Additional Information Relevant to Spectral Characteristics Measurements

Additional information was not identified.

Revision: 0

International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD-NEA, Paris (2012).

b Personal email communication with J. T. Mihalczo, May 23, 2011.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

1.4 Description of Reactivity Effects Measurements

1.4.1 Overview of Experiment

The critical configurations included five of six graphite plugs inserted into 1.27-cm-diameter radial holes in the graphite side reflector. The worth of one of these graphite plugs was measured and reported in References 3. The graphite plugs were inserted into the holes in the radial reflector for fine adjustments of the reactivity (see Reference 2).

1.4.2 Geometry of the Experiment Configuration and Measurement Procedure

The reactivities were measured using the reactor period method.

The logbook gives the diameter of the graphite plugs in the radial holes in the graphite reflector as 0.437 inches or 1.110 cm. An erroneous diameter of 0.95-cm was given in Reference 3.^a The worth of one of these plugs was about 2 ϕ per plug. Although no uncertainty was given in the published reports or logbooks, the experimenter has suggested an uncertainty in the worth measurements of 10%.^b

1.4.3 Material Data

The material data are the same as those given for the critical configuration (see Section 1.3 of HEU-COMP-FAST-002).

1.4.4 Temperature Data

The temperature is the same as for the critical configuration, 72°F (22°C).^c

1.4.5 Additional Information Relevant to Reactivity Effects Measurements

Additional information was not identified.

1.5 Description of Reactivity Coefficient Measurements

Reactivity coefficient measurements were not performed.

1.6 Description of Kinetics Measurements

Kinetics measurements were not performed.

Revision: 0

Date: March 31, 2013 Page 5 of 67

^a RSICC Lobgook 75r, p. 40, Personal communication with J.T. Mihalczo, September 5, 2012.

b Personal email communication with J. T. Mihalczo, November 23, 2011.

e Personal email communication with J. T. Mihalczo, May 23, 2011.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

1.7 Description of Reaction-Rate Distribution Measurements

1.7.1 Overview of Experiment

The relative axial distribution of induced fission in a uranium fission counter was measured. Within the core region of the assembly, this distribution is directly proportional to the relative fission-rate distribution.

Radial and axial distributions of the relative activation of ²³⁵U fission foils in the reflector were also measured. These measurements were also labeled as fission rates in Reference 3; however, according to the experimenter, it should be called the relative activation of ²³⁵U fission foils in the radial and top axial reflectors or the radial and axial distributions of the relative activation of ²³⁵U fission foils.^a

Henceforth, the measurements labeled fission rate in Reference 3 will be called axial distribution of the induced fission in a uranium fission counter or axial activation of ^{235}U fission foils for the axial measurements and radial activation of ^{235}U fission foils for the radial measurements. Relative activation and activation measurements are used as a general term to refer to all of these measurements.

The axial distribution of the induced fission in a uranium fission counter was judged unacceptable as a benchmark experiment. The axial and radial activations of ²³⁵U fission foils were judged to be acceptable as a benchmark experiment.

1.7.2 Geometry of the Experiment Configuration and Measurement Procedure

The activation measurements were performed for the critical assembly (as described in Section 1 of HEU-COMP-FAST-002).

1.7.2.1 Axial Measurements

A 2.5-cm-long \times 0.64-cm-diameter ²³⁵U fission counter was used for the axial scans. The counter was inserted through a hole in the top reflector and into the space in the core from which the center fuel rod had been removed. The count locations were based on the midpoint of the 2.5-cm-long detector chamber and were measured using a selsyn meter; the selsyn meter measured the height in centimeters to two significant figures. ^b Counts were recorded on a digital readout scaler. ^c During the axial fission-rate scans, the reactor power was monitored with an external BF₃ counter sitting on the floor meters away from the assembly. ^d About 100,000 counts were collected on the BF₃ monitor at each point and an average of about 10,000 counts on the fission counter. Counter results were normalized to an arbitrary location in the assembly and are summarized in Table 1.7-1, and the results are plotted in Figure 1.7-1. According to the experimenter, because the induced fission rates were normalized, the effect of composition of the fission counter would have a negligible effect. ^e

Three uranium foils identical to those used in the cadmium ratio measurements and the radial foil activation measurements were placed in the top reflector. The results of these foil activations are given in Table 1.7-1.

Revision: 0

Date: March 31, 2013 Page 6 of 67

^a Personal communication with J. T. Mihalczo, September 19, 2011 and November 14, 2011.

^b RSICC Lobgook 75r, p. 48, Personal email communication with J.T. Mihalczo, November 7, 2012.

^c Personal email communication with J. T. Mihalczo, November, 14, 2011.

d Personal email communication with J. T. Mihalczo, September 29, 2011.

Personal communication with J.T. Mihalczo, August 14, 2012.

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Table 1.7-1. Relative Axial Induced Fission in a Uranium Fission Counter (see Reference 3).

Distance from Bottom of Core ^(a)	Relative Fission Rate ^(b)		
(cm)	Counter (b)	Foils ^(c)	
5.0	0.12		
7.5	0.09		
10.0	0.12		
12.6	0.10		
15.1	0.11		
17.7	0.11		
20.2	0.10		
22.8	0.10		
25.3	0.13		
27.8	0.40		
30.4	0.67		
32.9	0.88		
35.4	0.99		
39.7	0.94	1.0	
40.5	1.01		
42.8	1.02	0.97	
45.8	0.87	0.86	
48.1	0.69		
50.7	0.44		
53.2	0.23		

- (a) Measured from the bottom of the stainless-steel fuel tubes if reference to the center of the
- (b) The detector was a ²³⁵U fission counter 2.5 cm long × 0.64 cm diameter.
- (c) The foils are the same as those used in the radial activation and cadmium ratio measurements.

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure 1.7-1. Normalized Relative Axial Fission Distribution in a Uranium Fission Counter (see Reference 3).

1.7.2.2 Radial Measurements

The relative activation of ²³⁵U fission foils was measured in the lower radial reflector, from the core tank out through the side reflector 7.63 cm below the core midplane, using the radial holes in the reflector. Foils were placed between sections of radial graphite plugs and placed at predetermined locations in the side reflector. Additionally, three foils were placed in the top reflector at 39.7, 42.8, and 45.8 cm above the bottom of the core. The 39.7 cm foil was used for normalization of both the axial and radial activation measurements. After activation, foils were placed in NaI detectors and the activity of the foils was measured, as described in Section 1.3. The relative radial distribution activation of ²³⁵U fission foils is given in Table 1.7-2 and Figure 1.7-2. A test irradiation, noted in the log book, showed counts of up to 40,000 per minute, depending on the discriminator setting. For each count in a particular NaI detector 100,000 counts were accumulated. The data from the axial and radial measurements of the first assembly were expressed in the same arbitrary units, via the normalization foil in the top reflector.

Revision: 0

Date: March 31, 2013 Page 8 of 67

^a Personal email communication with J. T. Mihalczo, September 13, 2011.

b Personal email communication with J. T. Mihalczo, September 27, 2011, and November 23, 2011. The experimenter believes a 250-KeV threshold was used "so as to not count the natural activity of the uranium foils" (November 14, 2011).

^c Personal communication with J.T. Mihaclzo, August 14, 2012.

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Table 1.7-2. Relative Radial Activation of ²³⁵U Fission Foils in Radial Reflector (see Reference 3).

Distance from	Relative Radial
Core (cm) ^(b)	Distribution ^(c)
0.5	0.65
3.0	1.08
6.5	1.45
8.5	1.53
11.7	1.52
14.5	1.44
17.0	1.27
20.7	0.95
24.5	0.54
26.5	0.33

- (a) Measured from the core-reflector interface. This was the inside surface of the side reflector. (Personal communication with the experimenter, January 12, 2013.)
- (b) Measured in the lower side reflector 7.63 cm below core midplane.

Revision: 0 Date: March 31, 2013

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure 1.7-2. Relative Radial Activation of ²³⁵U Fission Foils in the Lower Radial Reflector (Relative to foil in the top reflector^a) and Cadmium Ratios in the Lower Radial Reflector (see Reference 3).

1.7.3 Material Data

Material data for the core and reflector parts are the same as those given for the critical configuration (see Section 1.3 of HEU-COMP-FAST-002).

1.7.3.1 Axial Measurements

The active material in the fission counter was ²³⁵U, but the material of the counter housing was brass.^b According to the experimenter, the enrichment and isotopics of the uranium in the counter was the same as for the uranium metal described in HEU-MET-FAST-052.^{c,d}

1.7.3.2 Radial Measurements

The irradiated foils were 93.15 wt.% ²³⁵U. ^e The purity of the foils was not given. According to the experimenter, the enrichment and isotopics of the uranium metal foils was the same as the uranium metal described in HEU-MET-FAST-052. ^{b,c}

Revision: 0

^a Personal communication with J.T. Mihaclzo, August 29, 2012.

b Personal communication with J. T. Mihalczo, September 19, 2011.

^c Personal communication with J. T. Mihalczo, November 23, 2011.

International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD-NEA, Paris (2012).

References 1 and 2 report the foil enrichment as 93.2 wt.%, but according to the experimenter, it was 93.15 wt.% (September 19, 2011).

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

1.7.4 **Temperature Data**

The temperature is the same as for the critical configuration, 72°F (22°C).^a

1.7.5 Additional Information Relevant to Reaction-Rate Distribution Measurements

Additional information is not available.

1.8 **Description of Power Distribution Measurements**

The axial relative power distribution is the same as the relative fission rate that was measured in the core region of the assembly (see Section 1.7).

1.9 **Description of Isotopic Measurements**

Isotopic measurements were not performed.

1.10 **Description of Other Miscellaneous Types of Measurements**

Other miscellaneous types of measurements were not performed.

Revision: 0

Page 11 of 67 Date: March 31, 2013

Personal email communication with J. T. Mihalczo, May 23, 2011.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

2.0 EVALUATION OF EXPERIMENTAL DATA

The measurements were evaluated using Monte Carlo N-Particle (MCNP) Version 5-1.60^a and ENDF/B-VII.0^b neutron cross section libraries. All models were calculated such that the statistical uncertainty in k_{eff} , σ_{MC} , is less than or equal to ± 0.00006 .

2.1 Evaluation of Critical and/or Subcritical Configuration Data

(The criticality portion of this evaluation has been reviewed and approved by the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and has been published under the following identifier: HEU-COMP-FAST-002.°)

2.2 Evaluation of Buckling and Extrapolation Length Data

Buckling and extrapolation-length measurements were not performed.

2.3 Evaluation of Spectral Characteristics Data

The cadmium ratio measurements were a ratio of the activation of bare 93.15 wt% 235 U metal foils to the activation of 93.15 wt% 235 U metal foils with cadmium covers. According to the experimenter, the measurement uncertainty in the cadmium ratio would have been 0.5%. It is believed that this uncertainty is based on the number of counts taken for each foil, 100,000. The square root of the number of counts is divided by the number of counts. This yields the measurement uncertainty in a single foil. Because a ratio of activations is taken this uncertainty is then added to itself in quadrature giving a total measurement uncertainty of about 0.447%. It is believed that this value is arbitrarily rounded up to 0.5%. This was taken as the total measurement uncertainty. There is also an additional uncertainty in the measurements of ± 0.01 , bounding with a uniform distribution, due to the rounding of the measured values.

Uncertainties for the uranium metal and cadmium covers composition and geometry were evaluated using the simple benchmark model. In the benchmark models, the uranium foils and cadmium covers were modeled without impurities. The effect of adding impurities is treated as an uncertainty. According to the experimenter, the effect of foil composition would have been negligible because the cadmium ratio is a ratio. However, to calculate the effect of impurities in the uranium foils the uranium composition from HEU-MET-FAST-051e was used. It was found that a maximum 1σ uncertainty effect for the uranium foil composition is 0.44%. This is used for the uranium foil uncertainty. The uranium foils were modeled at the nominal density of 18.75 g/cm^3 given in HEU-MET-FAST-051. Using the mass and dimensions of the various uranium parts used in that evaluation it is found that the density of the parts had a standard deviation of $\pm 0.04 \text{ g/cm}^3$; this value was taken to be the 1σ uncertainty in the uranium foil density. The effect of this uncertainty was $\pm 0.25\%$. To determine the effect of impurities in the

Revision: 0

Date: March 31, 2013 Page 12 of 67

F. B. Brown, R. F. Barrett, T. E. Booth, J. S. Bull, L. J. Cox, R. A. Forster, T. J. Goorley, R. D. Mosteller, S. E. Post, R. E. Prael, E. C. Selcow, A. Sood, and J. Sweezy, "MCNP Version 5," LA-UR-02-3935, Los Alamos National Laboratory (2002).

M. B. Chadwick, et al., "ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology," *Nucl. Data Sheets*, 107: 2931-3060 (2006).

^c International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD-NEA, Paris (2012).

d Personal communication with J.T. Mihalczo, August 14, 2012

^e International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD-NEA, Paris (2012).

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

cadmium covers a 5N cadmium composition^a is assumed. The average effect on the cadmium ratio is $\pm 0.83\%$. The cadmium was modeled with a nominal density of 8.65g/cm^3 . The uncertainty in the density was taken to be $\pm 0.01 \text{ g/cm}^3$. The uncertainty in the cadmium density had a negligible effect.

The uncertainty in the cadmium thickness would have been ± 0.001 cm. The maximum 1σ effect of the uncertainty in the cadmium thickness is $\pm 0.24\%$. The uncertainty in the uranium foil thickness would have also been ± 0.001 cm. The maximum 1σ effect of the uncertainty in the uranium foil thickness is $\pm 1.68\%$. The uncertainty in the cadmium diameter would have been ± 0.001 cm and had a negligible effect. The uncertainty in the uranium foil diameter would have been ± 0.01 cm and had a maximum 1σ effect of $\pm 0.26\%$. The foil position was measured to one decimal place thus the uncertainty in the foil position would have been ± 0.1 cm. The effect of the positional uncertainty was negligible. These uncertainties are summarized in Table 2.3-1.

The total experimental uncertainty is 2.04% plus the rounding uncertainty and is summarized in Table 2.3-1.° The uncertainty in the cadmium ratio is given in Table 2.3-2 and is shown in Figure 2.3-1.

Table 2.3-1. Summary of Experimental	Uncertaint	v in	Cadmium Ra	itio.
--------------------------------------	------------	------	------------	-------

Uncertainty	Effect		
Measurement	±	0.5%	
Uranium Composition	±	0.44%	
Uranium Density	±	0.26%	
Cadmium Composition	±	0.83%	
Cadmium Density	±	NEG	
Cadmium Thickness	±	0.24%	
Uranium Foil Thickness	±	1.68%	
Cadmium Diameter	±	NEG	
Uranium Foil Diameter	±	0.26%	
Foil Position	±	NEG	
Total	±	2.04%	
Rounding	±	$0.01/\sqrt{3}$	

Revision: 0

Date: March 31, 2013 Page 13 of 67

a "High Purity Cadmium," ESPI Metals, http://www.espimetals.com/index.php/online-catalog/346-cadmium-cd, accessed June 28, 2012.

b PROTEUS-GCR-EXP-001

As discussed in Section 1.3 the foils were selected such that the foils were the same "to less than 1% for activation in the same neutron flux". This would lead to an uncertainty in the ratio or normalized measurements of less than 1% in foil properties due to foil correlation. For the benchmark experimental uncertainty each property was perturbed individually thus the actual uncertainty is probably somewhere between the 1% suggested by the experimenter and the benchmark experimental uncertainty.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Table 2.3-2. Uncertainty in Cadmium Ratio.

Distance from Core (cm) ^(a)	Cadmium Ratio ^(b)			
0.5	2.97	±	0.036	
6.0	4.91	±	0.046	
12.0	6.01	±	0.050	
18.0	6.60	±	0.053	
24.0	7.67	±	0.057	

- (a) Measured from the core-reflector interface. This was the inside surface of the side reflector.
- (b) Measured through lower side reflector: 7.63 cm below the midplane of the core.

Figure 2.3-1. Experimental Cadmium Ratio with Total Experimental Uncertainty.

2.4 Evaluation of Reactivity Effects Data

No uncertainty in the worth measurements was reported. A 10% 1σ total uncertainty was assumed for the worth measurements.^a An additional rounding uncertainty of ± 0.5 ¢ (1σ) was also included in the worth measurement. ^b The worth of one radial plug was about 2 ± 0.54 ¢.

2.5 Evaluation of Reactivity Coefficient Data

Reactivity coefficient measurements were not performed.

Revision: 0

^a A 10% uncertainty was recommended by the experimenter, November 23, 2011.

The experimenter believes that the $\pm 0.5 \, \phi \, (1\sigma)$ rounding uncertainty is not justified but it is retained in the total experimental based in the judgement of the evaluator, the other reviewers, and the technical review group.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

2.6 Evaluation of Kinetics Measurements Data

Kinetics measurements were not performed

2.7 Evaluation of Reaction-Rate Distributions

2.7.1 Axial Measurements

Upon evaluating and reviewing the axial induced fission in a uranium fission counter data it was found that the data are unacceptable as benchmark experiments. The calculation bias for the axial measurements was very high for the top of the core and bottom of the top reflector region. The same measurement in the first experiment, SCCA-SPACE-EXP-001, did not have a large calculational bias thus it was judged that the axial uranium fission counter measurement was unacceptable. The calculational bias for the simple model can be seen in Figure 2.7-1. It is apparent from this figure that there may have been a shift in the data that could have simply been due to a clerical error but this cannot be verified and the data must be rejected, in the absence of clarifying information. The evaluation of the axial uranium fission counter data has been preserved in Appendix B.

Figure 2.7-1. Calculation bias in Simple Model of Axial Measurement.

Three axial fission rate measurements were performed using uranium foils placed axially in the top reflector. The foils were identical to the uranium foils used in the radial foil activation measurements. The uncertainty in these measurements was judged to be the same as the uncertainty in the radial foil activation for SCCA-SPACE-EXP-001 and for this experiment: $\pm 2.26\%$ for the normalization point (39.7 cm) and $\pm 2.26\% \sqrt{2}$ for the other two points (see Table 2.7-2 for a summary of the total uncertainty). The axial activation of uranium foils results with associated experimental uncertainty is given in Table 2.7-1.

Revision: 0

Date: March 31, 2013 Page 15 of 67

The experimenter believes that the $\pm 0.5 \, \text{¢} \, (1\sigma)$ rounding uncertainty is not justified but it is retained in the total experimental based in the judgement of the evaluator, the other reviewers, and the technical review group.

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Table 2.7-1. Uncertainty in Relative Axial Activation of ²³⁵U Fission Foils Distribution.

Distance from Bottom of Core (cm)	Axial Distribution $(\pm 2.26\% \sqrt{2})^{(a)}$		
39.7	1.0	±	0.023
42.8	0.97	±	0.032
45.8	0.86	±	0.028

(a) The $\sqrt{2}$ accounts for the added uncertainty for the normalization and is not needed for the 39.7 cm measurement since it is the normalization foil.

2.7.2 Radial Measurements

No uncertainty in the radial measurement of the activation of ²³⁵U fission foils was reported by the experimenter. According to the experimenter the measurement uncertainty would have been 0.5 %.

In the benchmark model, the uranium foils were modeled without impurities. To calculate the effect of impurities in the uranium foils the uranium composition from HEU-MET-FAST-051^a was used. It was found that the maximum 1σ uncertainty effect for the uranium foil composition is 0.79 %. The density of the foils was 18.75 g/cm^3 ; the nominal density in HEU-MET-FAST-051. Using the mass and dimensions of the various uranium parts used in that evaluation it is found that the density of the parts had a standard deviation of $\pm 0.04 \text{ g/cm}^3$; this value was taken to be the 1σ uncertainty in the uranium foil density. The effect of this uncertainty was ± 0.08 %. The effect of foil enrichment and purity was evaluated by comparing tallies for 100 wt.% ^{235}U foils to 93.15 wt.% ^{235}U foils. It was found that this 6.8 wt.% change in enrichment yields a maximum change in the normalized tally results of only 0.6 %. Based on these results, it is assumed that the effect of uncertainty in the foil enrichment would be negligible.

The uncertainty in the uranium foil thickness would have been ± 0.001 cm. The maximum 1σ effect of the uncertainty in the uranium foil thickness is ± 2.05 %. The uncertainty in the uranium foil diameter would have been ± 0.01 cm and had a maximum 1σ effect of ± 0.08 %. Because the measurements were normalized to a foil in the top reflector, the uncertainty in all points is multiplied by $\sqrt{2}$. Since the same uncertainty is applied to all measurement points this simplified approach is justified. There is also an additional uncertainty in the measurements of ± 0.01 , bounding with a uniform distribution, due to the rounding of the measured values. These uncertainties, added in quadrature, are summarized in Table 2.7-2, given in Table 2.7-3 and shown in Figure 2.7-2.

The relative radial activation of the ²³⁵U fission foils was measured from the core-reflector interface; however, there was a 0.1-cm gap between the outside of the core and the inside of the side reflector. The zero point for these measurements was assumed to be at the inside surface of the side reflector. Radial plugs were in place when the activation of ²³⁵U fission foils measurements were made.^c

Revision: 0

Date: March 31, 2013 Page 16 of 67

^a International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD-NEA, Paris (2012).

b The experimenter believes that the $\pm 0.5 \, \phi \, (1\sigma)$ rounding uncertainty is not justified but it is retained in the total experimental based in the judgement of the evaluator, the other reviewers, and the technical review group.

Personal email communication with J. T. Mihalczo, September 13, 2011.

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Table 2.7-2. Summary of Experimental Uncertainty in Radial Activation of ²³⁵U Fission Foils.

Uncertainty		Effect
Measurement	±	0.5%
Uranium Composition	±	0.79%
Uranium Density	±	0.08%
Uranium Foil Enrichment	\pm	NEG
Uranium Foil Thickness	\pm	2.05%
Uranium Foil Diameter	±	0.08%
Foil Position	±	NEG
Total	±	$2.26\%\sqrt{2^{(a)}}$
Rounding	±	$0.01/\sqrt{3}$

⁽a) The $\sqrt{2}$ accounts for the added uncertainty from the normalization.

Table 2.7-3. Uncertainty in Relative Radial Activation of ²³⁵U Fission Foils Distribution.

Distance from Core (cm) ^(a)	Radial Distribution ^{(b)(c)}				
0.5	0.65	±	0.022		
3.0	1.08	±	0.035		
6.5	1.45	±	0.047		
8.5	1.53	±	0.049		
11.7	1.52	±	0.049		
14.5	1.44	±	0.046		
17.0	1.27	±	0.041		
20.7	0.95	±	0.031		
24.5	0.54	±	0.018		
26.5	0.33	±	0.012		

- (a) Measured from the core-reflector interface. This was the inside surface of the side reflector.
- (b) Normalized to axial foil in top reflector.
- (c) Measured through lower side reflector, 7.63 cm below the core midplane.

Revision: 0 Date: March 31, 2013

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure 2.7-2. Uncertainty in Relative Radial Distribution of Activation of ²³⁵U Fission Foils.

2.8 Evaluation of Power Distribution Data

The axial relative power distribution in the core is the same as the relative fission rate as was measured in the core region (see Section 2.7).

2.9 Evaluation of Isotopic Measurements

Isotopic measurements were not performed.

2.10 Evaluation of Other Miscellaneous Types of Measurements

Other miscellaneous types of measurements were not performed.

Revision: 0 Date: March 31, 2013

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

3.0 BENCHMARK SPECIFICATIONS

Models of the experiment were created using MCNP5 with ENDF.B-VII.0 neutron cross section libraries. Two benchmark models were created, a detailed and a simple benchmark model. The biases for the two benchmark models were determined by comparing against an as built model. All models were calculated with MCNP5 such that the statistical uncertainty (1σ) of k_{eff} was not more than 0.00006.

3.1 Benchmark-Model Specifications for Critical and/or Subcritical Measurements

(The criticality portion of this evaluation has been reviewed and approved by the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and has been published under the following identifier: HEU-COMP-FAST-002.^a)

3.2 Benchmark-Model Specifications for Buckling and Extrapolation-Length Measurements

Buckling and extrapolation-length measurements were not performed.

3.3 Benchmark-Model Specifications for Spectral Characteristics Measurements

3.3.1 Description of the Benchmark Model Simplifications

The detailed benchmark model was the same as the detailed benchmark model for the critical configuration described in HEU-COMP-FAST-002. The simple benchmark model for the cadmium ratio measurements had one less simplification than the critical simple benchmark model; the holes and plugs in the lower side and in both top reflectors were not homogenized into the reflector mass. All other simplifications given in Table 3-2 in HEU-COMP-FAST-002 were performed. The total simplification bias for the detailed and simple benchmark models was calculated and is given in Table 3.3-1. Biases arising from individual simplifications were not calculated. A bias in the cadmium ratio measurements is considered negligible if it is less than the statistical uncertainty of the Monte Carlo calculation. For biases that are negligible, the bias uncertainty is preserved; as can be seen in Table 3.3-1.

Cadmium ratio measurements were evaluated using explicit modeling of the foils and covers. Tallies were made over the foil and a tally multiplier for the ²³⁵U fission cross section was also used.

	Detailed Benchmark			Simpl	e Ber	nchmark
Distance from	Model S	Model Simplification		Model Simplification		lification
Core (cm) ^(a)		Bias			Bias	S
0.5	-	±	0.015	0.091	±	0.015
6.0	-	±	0.019	0.103	±	0.020
12.0	-	±	0.024	0.117	±	0.025
18.0	-	±	0.032	0.145	±	0.033
24.0	-0.095	±	0.050	0.064	±	0.051

Table 3.3-1. Simplification Bias of Cadmium Ratios.

Revision: 0

Date: March 31, 2013 Page 19 of 67

⁽a) Measured from the core-reflector interface (i.e., the inside surface of the side reflector). Measured through lower side reflector 7.63 cm below the midplane of the core.

^a International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD-NEA, Paris (2012).

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

3.3.2 Dimensions

The detailed benchmark model for the cadmium ratio measurements was the same as the detailed benchmark model for the critical configurations given in HEU-COMP-FAST-002 (see Section 3.2.1 for dimensions). The detailed benchmark model is shown in Figure 3.3-1 for reference but HEU-COMP-FAST-002 should be used for a full description of the model.

The simple benchmark model for the cadmium ratio measurements was similar to the simple benchmark for the critical configuration given in HEU-COMP-FAST-002 but the plugs and plug holes in the lower side and top reflectors were modeled explicitly. There were six 1.27-cm-diameter radial foil holes 7.63 cm below the midplane of the core. Five of the six holes were filled with 1.11-cm graphite plugs. Similarly, a 1.27-cm-diameter hole ran axially through the center of the lower and upper top reflectors and was filled with a 1.11-cm graphite plug. The dimensions and locations of these foil holes and plugs can be seen in Figure 3.3-2. All other dimensions were the same as those given in HEU-COMP-FAST-002 for the simple benchmark model (see Section 3.2.2).

For both the detailed and simple benchmark models, the uranium foils were 0.75-cm in diameter and 0.01-cm thick. The five bare foils were placed in two of the plugged holes and the five covered foils were placed in two other plugged holes. Foils were distributed to maximize distance between them. The cadmium covers completely enclosed the uranium metal foils, were 0.051-cm thick and extended just beyond the diameter of the uranium foils as shown in Figure 3.3-3.

Revision: 0 Date: March 31, 2013

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure 3.3-1. Detailed Benchmark Model.^a

Revision: 0

Page 21 of 67 Date: March 31, 2013

^a Simplification and biases applied to the detailed benchmark model from the as-built model include: room return bias, replacing air with void, grid plate simplification, fuel tube end cap simplification, and temperature bias.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure 3.3-2. Simple Benchmark Model.^a

Revision: 0

Date: March 31, 2013 Page 22 of 67

^a Additional simplifications for the simple benchmark model applied to the detailed benchmark model include: side reflector inside diameter averaging, removing of shims, removing of grid plate spacer tubes, removing of grid plates, simplification of the fuel tube, and the removal of fuel and graphite impurities.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure 3.3-3. Uranium Foils and Cadmium Covers.

3.3.3 Material Data

The material data for the detailed benchmark model for the cadmium ratios was the same as the material data for the detailed benchmark model for the critical configuration (see HEU-COMP-FAST-002, Section 3.3.1).

The material data for the simple benchmark model for the cadmium ratios was the same for all materials except the lower side, lower top, and upper top reflectors. The material data for all sections of reflector is given in Table 3.3-2. All other material data can be found in HEU-COMP-FAST-002, Section 3.3.2.

Table 3.3-2. Simple Benchmark Model, Reflector Composition.

		Lower Side	Upper Side	Lower Top	Upper Top	Bottom	
Element	ement wt.% Reflect		Reflector Reflector		Reflector	Reflector	
		Atom/barn-cm	Atom/barn-cm	Atom/barn-cm	Atom/barn-cm	Atom/barn-cm	
C ^(a)	99.45355%	8.7771E-02	8.6742E-02	8.8986E-02	8.3883E-02	8.2566E-02	

(a) Impurities in the graphite were replaced with void.

For the simple and detailed benchmark models, the uranium foils had a density of 18.75 g/cm³(see Section 2.3). The composition is given in Table 3.3-3.

Table 3.3-3. Uranium Metal Foil Composition.

Element	wt.%	Isotopic enrichment	Atoms/barn-cm
U Total	99.95 wt% ^(a)	-	4.7983E-02
²³⁴ U	-	0.97 wt%	4.6775E-04
²³⁵ U	-	93.14 wt%	4.4722E-02
²³⁶ U	-	0.24 wt%	1.1475E-04
²³⁸ U	-	5.65 wt%	2.6786E-03

(a) The total weight percent is reduced because impurities were replaced with void.

The cadmium covers had a density of 8.65 g/cm³. The composition is given in Table 3.3-4.

Revision: 0 Date: March 31, 2013

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Table 3.3-4. Cadmium Cover Composition.

Element	wt.%	Atoms/barn-cm
Cd Total	99.99911 wt% ^(a)	4.6340E-02

(a) The total weight percent is reduced because impurities were replaced with void.

3.3.4 Temperature Data

The temperature is the same as for the critical configuration, 72°F (22°C).^a

3.3.5 Experimental and Benchmark-Model Spectral Characteristics Parameters

The benchmark values for the cadmium ratios are found by applying the biases in Table 3.3-1 to the experimental results. The uncertainty in the benchmark model is found by adding in quadrature the uncertainty in the experimental results, discussed in Section 2.3, and the bias uncertainty given in Table 3.3-1. The benchmark results are given in Table 3.3-5 and Figure 3.3-3.

Table 3.3-5. Benchmark Cadmium Ratios.

Distance from Core (cm) ^(a)		Detailed Benchmark Cadmium Ratios			Simple Benchmark Cadmium Ratios			
0.5	2.97	±	0.04	3.06	±	0.04		
6.0	4.91	±	0.05	5.01	±	0.05		
12.0	6.01	±	0.06	6.13	±	0.06		
18.0	6.60	±	0.06	6.74	±	0.06		
24.0	7.58	±	0.08	7.73	±	0.08		

(a) Measured from the core-reflector interface (i.e., the inside surface of the side reflector). Measured through lower side reflector 7.63 cm below the midplane of the core.

Revision: 0

Date: March 31, 2013 Page 24 of 67

^a Personal email communication with J. T. Mihalczo, May 23, 2011.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure 3.3-3. Benchmark Cadmium Ratios.^a

3.4 Benchmark-Model Specifications for Reactivity Effects Measurements

3.4.1 Description of the Benchmark Model Simplifications

The models used to determine the radial graphite plug worth were the same as the detailed and simple benchmark models used for the cadmium ratio measurements but without the uranium foils and cadmium covers and were run using MCNP5 and ENDF/B-VII.0 neutron cross section libraries. They were run until the statistical uncertainty of k_{eff} was 0.00002. Thus, the statistical uncertainty in the reactivity calculation was 0.00003, or approximately 0.39 ¢ for the plug worth measurements (1 σ) and 0.56 ¢ for the bias calculation. Biases were considered negligible if they were less than 0.00006 $\Delta \rho$ (in units of Δk_{eff}).

The simplifications in the geometry from the as built model to the detailed and simple benchmark models had a negligible bias for the calculation of the graphite plug worth. The associated bias uncertainty was $0.56 \, \phi$. The benchmark worth of one radial graphite plug is given in Table 3.4-1.

Table 3.4-1. Benchmark Experiment Worth Value.

	Reactivity			
Worth of One Radial Graphite Plugs	2	±	0.78 ¢ ^(a)	

(a) Total uncertainty was found by adding in quadrature the measurement uncertainty, ± 0.54 ¢, in Section 2.4 and the bias uncertainty of ± 0.56 ¢.

Revision: 0

Date: March 31, 2013 Page 25 of 67

The zero point is the inside surface of the side reflector.

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

3.4.2 Dimensions

The detailed and simple benchmark models were identical to those used for the evaluation of the cadmium ratio (see Section 3.3.2). To model the worth of a radial graphite plug one plug was removed from the benchmark model and the resulting change to k_{eff} was used to determine the worth of a plug.

3.4.3 Material Data

The detailed and simple benchmark model materials were identical to those used for the evaluation of the cadmium ratio (see Section 3.3.3)

3.4.4 Temperature Data

The temperature was the same as the benchmark model (see Section 3.1.4).

3.4.5 Experimental and Benchmark-Model Reactivity Effect Parameters

The worth of one radial plug was 2 ± 0.78 ¢.

3.5 Benchmark-Model Specifications for Reactivity Coefficient Measurements

Reactivity coefficient measurements were not performed.

3.6 Benchmark-Model Specifications for Kinetics Measurements

Kinetics measurements were not performed.

3.7 Benchmark-Model Specifications for Reaction-Rate Distribution Measurements

3.7.1 Description of the Benchmark Model Simplifications

The model for the evaluation of the reaction-rate distribution was the same as the model used for the evaluation of the cadmium ratios (see Section 3.3.1).

A bias in the reaction-rate distribution measurements in considered negligible if it is less than the statistical uncertainty of the Monte Carlo calculation. For biases that are negligible, the bias uncertainty is preserved, as can be seen in Table 3.7-1.

3.7.1.1 Axial Measurement

The axial distribution of induced fission in a uranium fission counter measurements were found to be unacceptable as a benchmark experiment. Evaluated data have been preserved in Appendix B.

The model used for axial foil activation measurements used a mesh of cells superimposed over the geometry that had a radius of 0.32 cm and extended from the bottom of the core tank to the top of the top reflector. Each cell had a height of 0.01 cm. Cell-averaged flux tallies were used. A tally multiplier for the 235 U fission cross section was also used. It is believed that this method for modeling the reaction-rate distribution would have a negligible bias. The simplification biases for the detailed and simple benchmark model for the three axial activation foils were negligible. The bias uncertainty was ± 0.007 for all three foils for both benchmark models.

Revision: 0

Date: March 31, 2013 Page 26 of 67

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

3.7.1.2 Radial Measurement

A superimposed mesh was used to model the radial reaction-rate distributions. The cells had a radius of 0.375 cm and extended from the core tank out through the side reflector. Each cell had a height of 0.01 cm. An identically sized mesh tally was also used to model the activation of the foil that was placed in the top reflector (39.7 cm above to bottom of the core) for normalization of the radial measurements to axial measurements. A tally multiplier for the uranium fission cross section (93.2 wt.% ²³⁵U, 6.8 wt.% ²³⁸U) was used. It is believed that this method for modeling the reaction-rate distribution would have a negligible bias. The simplification bias on the measurement due to geometry simplifications is given in Table 3.7-1. Statistically insignificant biases were not included in Table 3.7-1 but the associated bias uncertainty was preserved.

Distance from Core	Simplification Bias ^(b)							
(cm) ^(a)	Detailed	Benchn	nark Model	Simple Benchmark Model				
0.5	-	±	0.004	-	±	0.004		
3.0	0.007	±	0.006	-0.008	±	0.006		
6.5	0.009	±	0.007	-0.013	±	0.007		
8.5	-	±	0.008	-0.014	±	0.008		
11.7	0.009	±	0.008	-0.017	±	0.008		
14.5	-	±	0.008	-0.013	±	0.008		
17.0	-	±	0.007	-0.016	±	0.007		
20.7	-	±	0.006	-0.011	±	0.006		
24.5	-	±	0.004	-0.009	±	0.004		
26.5	-0.010	±	0.003	-0.014	±	0.003		

⁽a) Measured from the core-reflector interface.

3.7.2 Dimensions

The dimensions for the detailed and simple benchmark models for the axial and radial foil activation measurements were the same as those used for the evaluation of the cadmium ratio (see Sections 3.3.2) but without the cadmium covers.

3.7.3 Material Data

The material data for the detailed and simple benchmark models of the axial and radial foil activation measurements were the same as those used for the evaluation of the cadmium ratio (see Sections 3.3.3).

3.7.4 Temperature Data

The temperature was the same as the cadmium ratio benchmark model (see Section 3.1.4).

Revision: 0

⁽b) Calculated by comparing as-built model results to detailed and simple benchmark-model results.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

3.7.5 Experimental and Benchmark-Model Reaction-Rate Distribution Parameters

3.7.5.1 Axial Measurement

The benchmark values of the axial 235 U fission foil activation measurements are given in Table 3.7-2. The uncertainty in the benchmark model is found by adding in quadrature the uncertainty in the experimental results, discussed in Section 2.7, and the bias uncertainty of ± 0.007 . The benchmark values for the detailed and simple benchmark models are identical.

Table 3.7-2. Benchmark Relative Axial Distribution of Activation of ²³⁵U Fission Foils.

Distance from Bottom of Core (cm)	Detailed Benchmark Model			Simple Benchmark Model				
39.7	1.0	±	0.02	1.0	±	0.02		
42.8	0.97	±	0.03	0.97	±	0.03		
45.8	0.86	±	0.03	0.86	±	0.03		

3.7.5.2 Radial Measurement

The radial distribution of the activation of ²³⁵U fission foils and the associated uncertainties, as discussed in Section 2.7, are given in Table 3.7-3 and Figure 3.7-1.

Table 3.7-3. Benchmark Distribution of Relative Radial Activation of ²³⁵U Fission Foils.

Distance from	Foil Activation ^{(b)(c)(d)}								
Core (cm) ^(a)	D Bench:	etaile mark		Simple Benchmark Model					
0.5	0.65	±	0.02	0.65	±	0.02			
3.0	1.09	±	0.04	1.07	±	0.04			
6.5	1.46	±	0.05	1.44	±	0.05			
8.5	1.53	±	0.05	1.52	±	0.05			
11.7	1.53	±	0.05	1.50	±	0.05			
14.5	1.44	±	0.05	1.43	±	0.05			
17.0	1.27	±	0.04	1.25	±	0.04			
20.7	0.95	±	0.03	0.94	±	0.03			
24.5	0.54	±	0.02	0.53	±	0.02			
26.5	0.32	±	0.01	0.32	±	0.01			

- (a) Measured from the core-reflector interface.
- (b) Normalized to axial foil in the top reflector at 39.7 cm from the bottom of the core.
- (c) Measured through lower side reflector 7.63 cm below the midplane of the core.
- (d) The total uncertainty includes the experimental and bias uncertainties added in quadrature.

Revision: 0

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure 3.7-1. Benchmark Relative Radial Distribution of Activation of ²³⁵U Fission Foils. ^a

3.8 Benchmark-Model Specifications for Power Distribution Measurements

The axial relative power distribution is the same as the relative fission rate as was measured in the core region (see Appendix B.3).

3.9 Benchmark-Model Specifications for Isotopic Measurements

Isotopic measurements were not performed.

3.10 Benchmark-Model Specifications for Other Miscellaneous Types of Measurements

Other miscellaneous types of measurements were not performed.

Revision: 0

^a The zero point was assumed to be at the inside surface of the side reflector.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

4.0 RESULTS OF SAMPLE CALCULATIONS

4.1 Results of Calculations of the Critical or Subcritical Configurations

(The criticality portion of this evaluation has been reviewed and approved by the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and has been published under the following identifier: HEU-COMP-FAST-002.^a)

4.2 Results of Buckling and Extrapolation Length Calculations

Buckling and extrapolation-length measurements were not performed.

4.3 Results of Spectral-Characteristics Calculations

The cadmium ratios were evaluated using a model as described in Section 3.3 with MCNP5-1.60 and ENDF/B-VII.0 neutron cross section libraries. Foils and covers were explicitly modeled and tallies were taken in the foil cells. Tally multipliers were also used. A total of 2,000 cycles were run, skipping the first 150 cycles, with 1,000,000 histories per cycle. Seven different random numbers were used for each calculation. The variance weighted average of the seven tally results was taken for the calculated distributions. The tally for the bare and covered foils was divided to find the cadmium ratio. Sample calculation results are given in Table 4.3-1 and 4.3.2 and shown in Figure 4.3-1 and 4.3-2.

Revision: 0

Date: March 31, 2013 Page 30 of 67

International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD-NEA, Paris (2012).

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Table 4.3-1. Radial Activation of ²³⁵U Fission Foils, Detailed Model.

Distance from			Cadmiu							
Core (cm) ^(a)	Detail	ed Ben Value	chmark	Detailed (Calcul	ated	(C-E)/E ^(b)		C/E ^(b) Ratio	
0.5	2 97	±	0.04	3.22	±	0.01	8.30%	1.08	±	0.01
0.3	2.97		0.04	3.22		0.01	8.3070	1.00		0.01
6.0	4.91	\pm	0.05	4.91	\pm	0.01	-0.04%	1.00	\pm	0.01
12.0	6.01	±	0.06	5.85	±	0.02	-2.65%	0.97	±	0.01
18.0	6.60	±	0.06	6.56	±	0.02	-0.54%	0.99	±	0.01
24.0	7.58	±	0.08	6.92	±	0.04	-8.65%	0.91	±	0.01

- (a) Zero point is the inside surface of side reflector.
- (b) "E" is the expected or benchmark value. "C" is the calculated value.

Figure 4.3-1. Cadmium Ratios, Detailed Model.

Table 4.3-2. Radial Activation of ²³⁵U Fission Foils, Simple Model.

Distance from			Cadmiu			C/E ^{(b})			
Core (cm) ^(a)	Simple B	Senchma	ark Value	Simple C	Calculat	ed Value	(C-E)/E ^(b)		Ratio	
0.5	3.06	±	0.04	3.31	±	0.01	8.08%	1.08	±	0.01
6.0	5.01	±	0.05	5.01	±	0.01	-0.15%	1.00	±	0.01
12.0	6.13	±	0.06	5.98	±	0.02	-2.34%	0.98	±	0.01
18.0	6.74	±	0.06	6.70	±	0.02	-0.64%	0.99	±	0.01
24.0	7.73	±	0.08	7.08	±	0.04	-8.47%	0.92	±	0.01

- (a) Zero point is the inside surface of side reflector.
- (b) "E" is the expected or benchmark value. "C" is the calculated value.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure 4.3-2. Cadmium Ratios, Simple Model.

4.4 Results of Reactivity-Effects Calculations

Worth measurements were evaluated by removing a graphite plug from the model described in Section 3.4. The models were run using MCNP5-1.60 and ENDF/B-VII.0 neutron cross section libraries. The models were run until the Monte Carlo statistical uncertainty was 0.00002; this required 1,000,000 histories per cycle for 2,000 cycles, skipping the first 150 cycles. The benchmark values and sample calculation results are given in Table 4.4-1. The detailed model calculated within 1σ of the detailed benchmark model. The simple model calculates within 1.5σ of the simple benchmark model.

			I	Worth of O	ne Radial C	raph	ite Plug		
		Benchmark Results			MCNP5 ENDF/B-VII.0			$\frac{C-E^{(c)}}{E}$	C/E ^(c) Ratio
Detailed	(Δk_{eff})		-		0.00009	±	0.00003	-	-
Model	(¢)	2	±	$0.78 {\it c}^{(b)}$	1.25	±	0.40 ¢	-37.60%	0.62 ± 0.31
Simple	(Δk_{eff})		-		0.00006	±	0.00003	-	-
Model	(¢)	2	±	0.78 ¢ ^(b)	0.83	±	0.39 ¢	-58.38%	0.42 ± 0.26

Table 4.4-1. Worth Measurement Sample Calculation Results. (a)

- (a) Both the detailed and simple models calculate within 2σ of the detailed and simple benchmark models.
- (b) Total uncertainty was found by adding in quadrature the measurement uncertainty in Section 2.4 and the bias uncertainty in Section 3.4.
- (d) "E" is the expected or benchmark value. "C" is the calculated value.

4.5 Results of Reactivity Coefficient Calculations

Reactivity coefficient measurements were not performed.

Revision: 0

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

4.6 Results of Kinetics Parameter Calculations

Kinetics measurements were not performed.

4.7 Results of Reaction-Rate Distribution Calculations

The relative and radial activations of ²³⁵U fission foils distribution were evaluated using models as described in Section 3.7 in MCNP5-1.60 and ENDF/B-VII.0 neutron cross section libraries. An fmesh cell flux tally and a fission cross section tally multiplier were used to simulate the measurements. An fmesh is a mesh of cells superimposed over a geometry for the purpose of performing tallies. A total of 2,000 cycles were run, skipping the first 150 cycles, with 1,000,000 histories per cycle. Seven different random numbers were used for each calculation. The variance weighted average of the seven tally results was taken for the calculated distributions.

4.7.1 Axial Measurements

The axial distribution of induced fission in a uranium fission counter measurements were found to be unacceptable as a benchmark experiment. Evaluated data have been preserved in Appendix B.

For the axial activation measurements, the fmesh extended from the bottom of the core to the top of the top reflector for the axial measurements and had a radius of 0.32 cm. The tally multiplier was for 235 U. Results are given in Table 4.7-1.

Revision: 0

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Table 4.7-1. Relative Axial Distribution of ²³⁵U Fission Foil Activation.

	Distance from			Foil Ac	tivation			(C-E)/E ^(a)	C/E ^(a)		
	Core (cm)	Benchmark Value Calculated					l Value	(C-E)/E	Ratio		
Detailed	39.7	1.00	±	0.02	1.000	±	0.005	0.0%	1.00	±	0.02
Model	42.8	0.97	±	0.03	0.976	±	0.005	0.6%	1.01	±	0.03
Wiodei	45.8	0.86	±	0.03	0.860	±	0.004	0.0%	1.00	±	0.03
	39.7	1.00	±	0.02	1.000	±	0.005	0.0%	1.00	±	0.02
Simple Model	42.8	0.97	±	0.03	0.979	±	0.005	0.9%	1.01	±	0.03
	45.8	0.86	±	0.03	0.852	±	0.005	-0.9%	1.00	±	0.03

⁽a) "E" is the expected or benchmark value. "C" is the calculated value.

4.7.2 Radial Measurements

For the radial measurements, the fmesh extended from a radius of 11.485 cm (halfway between the core tank wall and the inside surface of the side reflector) through a plugged radial hole to the outside of the side reflector and had a radius of 0.375 cm. The normalization value was modeled using an identically sized fmesh spanning the height of the top reflector. The foil 39.7 cm above the bottom of the core was used for the normalization. The tally multiplier was for 93.2 wt.% ²³⁵U (6.8 wt.% ²³⁸U) fission cross sections. Results are given in Table 4.7-2 and 4.7.3 and plotted in Figure 4.7-1 and 4.7-.2.

Revision: 0 Date: March 31, 2013

Table 4.7-2. Radial Activation of ²³⁵U Fission Foils, Detailed Model.

Distance from		F	Foil Acti	vation ^(b)		C/E ^(c)				
Core (cm) ^(a)	Benchmark Value			Calcul	ated	Value	(C-E)/E ^(c)	R		
0.5	0.65	±	0.02	0.608	±	0.003	-6.43%	0.94	\pm	0.03
3.0	1.09	±	0.04	1.051	±	0.004	-3.31%	0.97	±	0.03
6.5	1.46	±	0.05	1.412	±	0.005	-3.19%	0.97	±	0.03
8.5	1.53	±	0.05	1.502	±	0.005	-1.85%	0.98	±	0.03
11.7	1.53	±	0.05	1.532	±	0.005	0.20%	1.00	±	0.03
14.5	1.44	±	0.05	1.431	±	0.005	-0.65%	0.99	±	0.03
17.0	1.27	±	0.04	1.271	±	0.005	0.10%	1.00	±	0.03
20.7	0.95	±	0.03	0.951	±	0.004	0.10%	1.00	±	0.03
24.5	0.54	±	0.02	0.555	±	0.003	2.72%	1.03	±	0.04
26.5	0.32	±	0.01	0.330	±	0.002	3.08%	1.03	±	0.04

- (a) Zero point is the inside surface of side reflector.
- (b) Normalized to the midpoint of the top reflector of Case 1.
- (c) "E" is the expected or benchmark value. "C" is the calculated value.

Figure 4.7-1. Relative Radial Activation of ²³⁵U Fission Foils in the Radial Reflector of Detailed Model.

Table 4.7-3. Radial Activation of ²³⁵U Fission Foils, Simple Model.

Distance from			Foil Act	ivation ^{(l}	p)			(C/E ^(c)		
Core (cm) ^(a)	Bench	mark	Value	Calculated Value			(C-E)/E ^(c)	Ratio			
0.5	0.65	±	0.02	0.604	±	< 0.001	-7.04%	0.93	±	0.03	
3.0	1.07	±	0.04	1.036	±	< 0.001	-3.36%	0.97	±	0.03	
6.5	1.44	±	0.05	1.391	±	< 0.001	-3.23%	0.97	±	0.03	
8.5	1.52	±	0.05	1.486	±	0.001	-1.96%	0.98	±	0.03	
11.7	1.50	±	0.05	1.506	±	0.002	0.20%	1.00	±	0.03	
14.5	1.43	±	0.05	1.416	±	0.003	-0.77%	0.99	±	0.03	
17.0	1.25	±	0.04	1.255	±	0.004	0.14%	1.00	±	0.03	
20.7	0.94	±	0.03	0.945	±	0.004	0.57%	1.01	±	0.03	
24.5	0.53	±	0.02	0.549	±	0.005	3.45%	1.03	±	0.04	
26.5	0.32	±	0.01	0.326	±	0.005	3.12%	1.03	±	0.04	

- (a) Zero point is the inside surface of side reflector.
- (b) Normalized to the midpoint of the top reflector of Case 1.
- (c) "E" is the expected or benchmark value. "C" is the calculated value.

Figure 4.7-2. Relative Radial Activation of ²³⁵U Fission Foils in the Radial Reflector of Simple Model.

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

4.8 Results of Power Distribution Calculations

Power density distribution measurements were not performed in the radial direction, but axial relative power density distribution measurements were performed in the central fuel pin location. Power density is proportional to the fission rate in a fission counter traversed axially through the core (see Appendix B.4).

4.9 Results of Isotopic Calculations

Isotopic measurements were not performed.

4.10 Results of Calculations for Other Miscellaneous Types of Measurements

Other miscellaneous types of measurements were not performed.

Revision: 0

Date: March 31, 2013 Page 37 of 67

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

5.0 REFERENCES

- 1. J.T. Mihalczo, "A Small Graphite-Reflected UO₂ Critical Assembly," ORNL-TM-450, Oak Ridge National Laboratory (1962).
- 2. J.T. Mihalczo, "A Small Graphite-Reflected UO₂ Assembly," *Proc.* 5th Int. Conf. Nucl. Crit. Safety, Albuquerque, NM, September 17-21 (1995).
- 3. J.T. Mihalczo, "A Small Graphite-Reflected UO2 Critical Assembly, Part II," ORNL-TM-561, Oak Ridge National Laboratory (1963).
- 4. J.T. Mihalczo, "A Small Beryllium-Reflected UO2 Assembly," ORNL-TM-655, Oak Ridge National Laboratory (1963).
- 5. J.T. Mihalczo, "A Small, Beryllium-Reflected UO₂ Critical Assembly," *Trans. Am. Nucl. Soc.*, **72**, 196-198 (1995).

Revision: 0

Date: March 31, 2013 Page 38 of 67

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

APPENDIX A: COMPUTER CODES, CROSS SECTIONS, AND TYPICAL INPUT LISTINGS

Models were creating using Monte Carlo n-Particle (MCNP), Version 5-1.60, and ENDF/B-VII.0 neutron cross section libraries. Isotopic abundances for all elements except uranium were taken from "Nuclides and Isotopes: Chart of the Nuclides," Sixteenth Edition, KAPL, 2002.

A.1 Critical/Subcritical Configurations

(The criticality portion of this evaluation has been reviewed and approved by the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and has been published under the following identifier: HEU-COMP-FAST-002.^a)

A.2 Buckling and Extrapolation Length Configurations

Buckling and extrapolation-length measurements were not performed.

A.3 Spectral-Characteristics Configurations

A.3.1 Name(s) of Code System(s) Used

1. Monte Carlo n-Particle, Versions 5.1.51 and 5.1.60 (MCNP5).

A.3.2 Bibliographic References for the Codes Used

1. F. B. Brown, R. F. Barrett, T. E. Booth, J. S. Bull, L. J. Cox, R. A. Forster, T. J. Goorley, R. D. Mosteller, S. E. Post, R. E. Prael, E. C. Selcow, A. Sood, and J. Sweezy, "MCNP Version 5," LA-UR-02-3935, Los Alamos National Laboratory (2002).

A.3.3 Origin of Cross-section Data

The evaluated neutron data file library ENDF/B-VII.0^b was utilized in the benchmark-model analysis.

A.3.4 Spectral Calculations and Data Reduction Methods Used

Not applicable.

A.3.5 Number of Energy Groups or If Continuous-energy Cross Sections are Used in the Different Phases of Calculation

- 1. Continuous-energy cross sections.
- 2. Continuous-energy cross sections.

Revision: 0

Date: March 31, 2013 Page 39 of 67

International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD-NEA, Paris (2012).

M. B. Chadwick, et al., "ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology," *Nucl. Data Sheets*, 107: 2931-3060 (2006).

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

A.3.6 Component Calculations

- Type of cell calculation reactor core and reflectors
- Geometry fuel pin and assembly lattice
- Theory used Not applicable
- Method used Monte Carlo
- Calculation characteristics
 - MCNP5 histories/cycles/cycles skipped = 1,000,000/2,000/150 continuous-energy cross sections

A.3.7 Other Assumptions and Characteristics

MCNP5 Input Deck for Cadmium Ratio Benchmark Models:

Not applicable.

A.3.8 Typical Input Listings for Each Code System Type

```
Detailed Model
SCCA-FUND-EXP-002-001 and HEU-COMP-FAST-002
   Cell Cards
   1 6.57372E-02 (-25 22 -26) u=10 imp:n=1
                                              $fuel pellet
        -22:(25 22 -26 ):26 u=10 imp:n=1 $void around pellet
3 0
        -28 lat=1 u=11 imp:n=1 fill= 0:0 0:0 -1:26
       С
      Normal Fuel Tube
   0
       -21 22 -23 fill=11 u=12 imp:n=1
   15 8.19858E-02 (1 -24 -20 21) u=12 imp:n=1 $Fuel tube
    16 2.17619E-02 (1 -22 -21):(23 -24 -21) u=12 imp:n=1 $end caps
   20 7.01794E-02 -160 166 u=12 imp:n=1 $Grid Plate
17
1.8
601 0 -161 -166 20 u=12 imp:n=1
   0 -1:(1 160 161 20 -24):24 u=12 imp:n=1
19
    Fuel tubes that have been moved in
20 0
       -21 22 -23 fill=11 u=13 imp:n=1
    15 8.19858E-02 (21) u=13 imp:n=1 $Fuel tube
22 16 2.17619E-02 (-22 -21):(23 -21) u=13 imp:n=1 $end caps
    Fuel tubes with grid plates
-21 22 -23 fill=11 u=14 imp:n=1
30    15    8.19858E-02    (1 -24 -20 21)    u=14    imp:n=1    $Fuel tube
    16 2.17619E-02 (1 -22 -21):(23 -24 -21) u=14 imp:n=1 $end caps
   20 7.01794E-02 -160 166 u=14 imp:n=1 $Grid Plate
603 0 -161 -166 20 u=14 imp:n=1
34
         20 -163 164 -165 u=14 imp:n=1
35
   21 8.16965E-02 -162 163 u=14 imp:n=1 $Spacer Tube
36 0 -1:(164 162 -165):(165 161 20 -24):24 u=14 imp:n=1
    Normal Fuel Tube
110 0 -12 fill=12 u=1 imp:n=1
    Fuel Tubes that have been moved in
111 0 -13 fill=13 (-3.766 -11.458 0) imp:n=1
112 0 -14 fill=13 (3.766 -11.458 0) imp:n=1
       -15 fill=13 (3.766 11.458 0) imp:n=1
114 0 -16 fill=13 (-3.766 11.458 0) imp:n=1
```

Revision: 0

Space Reactor-SPACE

```
115 0
      -17 fill=13 (-8.039 -8.989 0) imp:n=1
       -18 fill=13 (8.039 -8.989 0) imp:n=1
116 0
117 0
     -19 fill=13 (-8.039 8.989 0) imp:n=1
      -30 fill=13 (8.039 8.989 0) imp:n=1
118 0
      -31 fill=13 (-11.805 -2.467 0) imp:n=1
119 0
120 0 -32 fill=13 (11.805 -2.467 0) imp:n=1
121
       -33 fill=13 (-11.805 2.467 0) imp:n=1
   0
122 0
      -34 fill=13 (11.805 2.467 0) imp:n=1
   Void Universe w/ Grid plate
127 20 7.01794E-02 -160 u=9 imp:n=1
128
   20 7.01794E-02 -161 u=9 imp:n=1
129 0 -999 161 160 u=9 imp:n=1
   Center Location w/ hole in grid plate
123 20 7.01794E-02 -160 166 u=8 imp:n=1
124 20 7.01794E-02 -161 166 u=8 imp:n=1
606 0 -160 -166 u=8 imp:n=1
607 0 -161 -166 u=8 imp:n=1
126 0 -999 161 160 u=8 imp:n=1
  Core Assembly
130 0 -11 lat=2 u=2 imp:n=1 fill= -10:10 -10:10 0:0
    9 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 9 9 $ROW 4
        9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 9 $ROW 9
            9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 9 $ROW 10
             9 9 1 14 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 4 1 9 9 $ROW 11
             9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 9 9 $ROW 12
              9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 9 9 9 $ROW 13
               9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 9 9 9 $ROW 14
                9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 $ROW 15
                 Core Tank
131 0 -151 1 -153 13 14 15 16 17 18 19 30 31 32 33 34
       -101 -103 -105 -107 -109
                                  fill=2 imp:n=1
132 22 6.01138E-02 -151 113 -114 #131 imp:n=1 $Al Shims
133 0 -151 1 -113 #131 13 14 15 16 17 18 19 30 31 32 33 34 imp:n=1
134 0 -151 114 -153 #131 13 14 15 16 17 18 19 30 31 32 33 34 imp:n=1
135 0 -210 -211 150 imp:n=1
136 0 -152 -150 220 213 250 imp:n=1
   0 -310 -212 150 imp:n=1
137
140
   2 5.82903E-02 (-153 154 -150 151):(-154 152 -150) imp:n=1 $Core Tank
C Reflectors
50 10 8.91041E-02 -200 237 imp:n=1 $Lower Top reflector
   10 8.91041E-02 -238 -200 imp:n=1
78 0 -237 238 -200 imp:n=1
51 11 8.39948E-02 200 -201 237 imp:n=1 $Upper Top Refleltor 79 11 8.39948E-02 -238 -201 imp:n=1
80 0 -237 238 -201 imp:n=1
   8 8.78956E-02 310 -212 225 227 229 231 233 235 imp:n=1 $Lower Side Reflector 8 8.78956E-02 -212 310 -226 711 713 imp:n=1
66 8 8.78956E-02 -212 310 -228 710 712 714 imp:n=1
   8 8.78956E-02 -212 310 -230 701 703 imp:n=1
68 8 8.78956E-02 -212 310 -232 700 702 704 imp:n=1
69 8 8.78956E-02 -212 310 -234 imp:n=1
71 0
     -212 310 -235 imp:n=1
72 0 -212 310 -233 234 imp:n=1
7.3
      -212 310 -231 232 imp:n=1
74 0 -212 310 -229 230 imp:n=1
     -212 310 -227 228 imp:n=1
7.5 0
     -212 310 -225 226 imp:n=1
76 0
700 200 4.79835E-02 -700 imp:n=1
701 200 4.79835E-02 -701 imp:n=1
702 200 4.79835E-02 -702 imp:n=1
703
   200 4.79835E-02 -703 imp:n=1
704 200 4.79835E-02 -704 imp:n=1
```

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
705 200 4.79835E-02 -705 imp:n=1
706 200 4.79835E-02 -706 imp:n=1
707 200 4.79835E-02 -707 imp:n=1
708 200 4.79835E-02 -708 imp:n=1
709 200 4.79835E-02 -709 imp:n=1
710 201 4.63399E-02 705 -710 imp:n=1
     201 4.63399E-02 706 -711 imp:n=1
711
712 201 4.63399E-02 707 -712 imp:n=1
713 201 4.63399E-02 708 -713 imp:n=1
714 201 4.63399E-02 709 -714 imp:n=1
81 0 -1 -151 154 220 imp:n=1
53 9 8.68493E-02 210 -211 imp:n=1 $Upper Side Reflector 54 12 8.26756E-02 -220 imp:n=1 $bottom Reflector
C Support Structure/Additional Reflectors
60 30 6.01329E-02 -250 imp:n=1 $Uppwer Al Plate
61 31 5.99935E-02 -251 imp:n=1 $Lower Al Plate
62 32 8.75101E-02 -252 imp:n=1 $SS304 Plate
63 33 8.31237E-02 -253 254 imp:n=1 $Iron Table
64 0 -999 #60 #61 #62 #63 212 211 200 201 imp:n=1
999 0 999 imp:n=0
С
    Surface Cards
     pz 0.
                   $bottom of fuel
20
    cz 0.635
                   $OR Clad
     cz 0.584 $IR Clad
pz 0.3 $top of 1
                    $top of bottom cap
    pz 30.18
23
                   $bottom of top cap
2.4
     pz 30.48
                    $Top of fuel tube
     cz 0.5705 $OR of Pellet
     pz 1.445 $Top of bottom fuel pellet
rpp -0.9 0.9 -0.9 0.9 0.2978 1.4472 $pellet lattice box
2.8
     rhp 0 0 -10 0 0 50 0.753 0 0 rhp 0 0 -11 0 0 52 1 0 0
11
C 13 rcc 0 0 0 0 0 30.48 0.635
    rcc -3.766 -11.458 0 0 0 30.48 0.635 rcc 3.766 -11.458 0 0 0 30.48 0.635
13
1 4
    rcc 3.766 11.458 0 0 0 30.48 0.635
     rcc -3.766 11.458 0 0 0 30.48 0.635
rcc -8.039 -8.989 0 0 0 30.48 0.635
    rcc 8.039 -8.989 0 0 0 30.48 0.635
1.8
19
     rcc -8.039 8.989 0 0 0 30.48 0.635
    rcc 8.039 8.989 0 0 0 30.48 0.635
31
     rcc -11.805 -2.467 0 0 0 30.48 0.635
    rcc 11.805 -2.467 0 0 0 30.48 0.635
32
    rcc -11.805 2.467 0 0 0 30.48 0.635 rcc 11.805 2.467 0 0 0 30.48 0.635
33
34
C Core Tank
150 cz 12.98 $OR Core Tank
151 cz 12.726 $IR Core Tank
152 pz -23.224 $Bottom of Core Tank
154 pz -22.86 $top of bottom of core tank
153 pz 30.816 $Top of Core Tank
C Grid Plate
160 rcc 0 0 0 0 0.317 12.8 $bottom grid plate
    rcc 0 0 28.257 0 0 0.317 12.8 $top grip plate cz 0.642
C Grid Plate Spacer Tubes
162 rcc 0 0 0.317 0 0 27.94 0.685
163
      cz 0.642
164 pz 0.317
      pz 28.257
165
     Al Shims
101 p -2.9708 12.3744 15 0.0000 12.3744 30 2.9708 12.3744 15
      p 9.2311 8.7600 15 10.7165 6.1872 30 12.2019 3.6144 15
     p 12.2019 -3.6144 15 10.7165 -6.1872 30 9.2311 -8.7600 15
105
     p 2.9708 -12.3744 15 0.0000 -12.3744 30 -2.9708 -12.3744 15
p -9.2311 -8.7600 15 -10.7165 -6.1872 30 -12.2019 -3.6144 15
107
109
113 pz 14.4
114
      pz 16.31
C Al Fuel Tube Clips
115 rcc 0 0 14.99 0 0 0.5 12.8
C Reflectors
    Top Reflectors
                       0 0 15.25 38.1 $Lower Top Reflector
200 rcc 0 0 30.816
                       0 0 8.36
201
     rcc 0 0 46.066
                                      25.4 $Upper Top Reflector
C Side Reflectors
210 cz 13.07 $IR Upper Side Reflector
```

Revision: 0

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
211 rcc 0 0 23.186
                          0 0 7.63 38.6 $Upper Side Reflector
310 cz 13.065 $IR Lower Side Reflector
212 rcc 0 0 -23.444 0 0 46.63 40.9675 $Lower Side Reflector
213 pz -23.444 $surface for creating void regions
C Bottom Reflector
220 rcc 0 0 -22.86 0 0 22.86 12.71 $bottom reflector
C Foil Holes in lower side and top reflector
225 rcc 0 0 7.61 -50 0 0 0.635 $west hole
226 rcc 0 0 7.61 -50 0 0 0.555 $west plug 227 rcc 0 0 7.61 -40 69.3 0 0.635 $nnw hole
228 rcc 0 0 7.61 -40 69.3 0 0.555 $nnw plug
229
     rcc 0 0 7.61 40 69.3 0 0.635 $nne hole
230 rcc 0 0 7.61 40 69.3 0 0.555 $nne plug
231 rcc 0 0 7.61 50 0 0 0.635 $west hole
232 rcc 0 0 7.61 50 0 0 0.555 $west plug
233 rcc 0 0 7.61 40 -69.3 0 0.635 $sse hole
234 rcc 0 0 7.61 40 -69.3 0 0.555 $sse plug
235 rcc 0 0 7.61 -40 -69.3 0 0.635 $ssw hole
236 rcc 0 0 7.61 -40 -69.3 0 0.555 $ssw plug
237 cz 0.635
238 cz 0.555
239 pz 45.96
240 pz 54.32
C Additional Bottom Reflectors
250 rcc 0 0 -25.164 0 0 1.94 10.8 $Al Upper Plate 251 rcc 0 0 -25.794 0 0 0.63 22.86 $Al Lower Plate
252 rcc 0 0 -28.174 0 0 2.38 22.86 $SS304 Plate
253 rpp -60.95 60.95 -60.95 60.95 -24.82 -23.55 $Iron Table
254 cz 13.335
     Bare Foils
700 rcc 13.56 0 7.61 0.01 0 0 0.375
701 rcc 9.53 16.5064442 7.61 0.005 0.008660254 0 0.375
702 rcc 25.06 0 7.61 0.01 0 0 0.375
703 rcc 15.53 26.89874904 7.61 0.005 0.008660254 0 0.375
                     0 7.61 0.01 0 0 0.375
704 rcc 37.06
C
     Covered Foils
705 rcc -6.78 11.74330448 7.61 -0.005 0.008660254 0 0.375
     rcc -19.06 2.33513E-15
rcc -12.53 21.70259662
                                        7.61 -0.01 1.22515E-18 0 0.375
7.61 -0.005 0.008660254 0 0.375
706
707
                                       7.61 -0.01 1.22515E-18 0 0.375
7.61 -0.005 0.008660254 0 0.375
708 rcc -31.06 3.80531E-15
709 rcc -18.53 32.09490146
                                                                                   0.375
      Covers
710 rcc -6.7545 11.69913718 7.61 -0.056 0.096994845 0
711 rcc -19.009 2.32888E-15 7.61 -0.112 1.37217E-17 0
      rcc -6.7545
                                                                                     0.38
                                                                                    0.38

    rcc -12.5045
    21.65842932
    7.61
    -0.056
    0.096994845
    0
    0.38

    rcc -31.009
    3.79906E-15
    7.61
    -0.112
    1.37217E-17
    0
    0.38

    rcc -18.5045
    32.05073417
    7.61
    -0.056
    0.096994845
    0
    0.38

712
713
714
С
      rpp -500 500 -500 500 -500 500
999
     Data Cards
       92234.70c 2.22221E-04
m 1
       92235.70c 2.04075E-02
92236.70c 1.02532E-04
       92238.70c 1.16161E-03
       8016.70c
                     4.36813E-02
       8017.70c 1.06404E-04
       47107.70c 5.62272E-07
47109.70c 5.22379E-07
        4009.70c 9.73675E-08
       24050.70c 1.12435E-07
24052.70c 2.16820E-06
       24053.70c 2.45856E-07
        24054.70c
                      6.11987E-08
       3006.70c 4.74083E-08
       3007.70c 5.84702E-07
28058.70c 8.33992E-07
       28060.70c 3.21252E-07
                     1.39646E-08
4.45253E-08
        28061.70c
       28062.70c
                     1.13393E-08
7.17017E-09
        28064.70c
        50112.70c
                     4.87867E-09
        50114.70c
                     2.51325E-09
1.07479E-07
        50115.70c
        50116.70c
       50117.70c
                     5.67700E-08
       50118.70c
                      1.79032E-07
```

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
50119.70c 6.34966E-08
50120.70c 2.40829E-07
        50122.70c 3.42246E-08
                       4.27992E-08
3.57743E-06
        50124.70c
        13027.70c
                       7.07498E-06
4.72195E-08
9.85261E-09
        20040.70c
         20042.70c
        20043.70c
                       1.52241E-07
2.91929E-10
        20044.70c
        20046.70c
        20048.70c 1.36477E-08
                       1.20986E-06
5.39253E-07
        29063.70c
        29065.70c
        12024.70c 1.14073E-06
12025.70c 1.44414E-07
12026.70c 1.59000E-07
        15031.70c 9.44341E-06
5010.70c 5.38407E-08
        5011.70c 2.16716E-07
        26054.70c 7.95942E-07
        26056.70c 1.24946E-05
        26057.70c 2.88555E-07
26058.70c 3.84013E-08
        25055.70c 4.25932E-07
                       2.25774E-10
2.15124E-10
         56130.70c
        56132.70c
        56134.70c
                       5.14807E-09
1.40406E-08
        56135.70c
        56136.70c
                       1.67286E-08
        56137.70c 2.39235E-08
56138.70c 1.52713E-07
        19039.70c 3.48837E-06
                       4.37645E-10
2.51747E-07
         19040.70c
        19041.70c
                       1.27230E-06
5.76320E-06
        11023.70c
        14028.70c
        14029.70c 2.92641E-07
        14030.70c 1.92911E-07
                                            $ TOT 6.57372E-02
    Fuel Clad
      26054.70c 3.25448E-03
26056.70c 5.10884E-02
26057.70c 1.17985E-03
m15
        26058.70c 1.57017E-04
6000.70c 1.50688E-04
                        1.57017E-04
        25055.70c 8.23618E-04
14028.70c 7.42946E-04
        14029.70c 3.77250E-05
        14030.70c 2.48686E-05
24050.70c 6.80598E-04
24052.70c 1.31247E-02
24053.70c 1.48823E-03
                       1.48823E-03
3.70452E-04
         24053.70c
        24054.70c
                       5.77334E-03
2.22388E-03
        28058.70c
        28060.70c
        28061.70c
                       9.66705E-05
                       3.08228E-04
7.84965E-05
         28062.70c
        28064.70c
                       3.28690E-05
2.00907E-05
        15031.70c
        16032.70c
        16033.70c
                       1.60844E-07
        16034.70c 9.07921E-07
16036.70c 4.23273E-09
        41093.70c 3.13488E-04
73181.70c 1.40839E-05
                                            $ tot 8.19858E-02
C End Caps
m16 26054.70c 8.63854E-04
26056.70c 1.35607E-02
        26057.70c 1.33007E 02
26057.70c 3.13175E-04
        26058.70c 4.16778E-05
6000.70c 3.99979E-05
        25055.70c 2.18617E-04
14028.70c 1.97204E-04
        14029.70c 1.00135E-05
                       6.60099E-06
1.80655E-04
        14030.70c
        24050.70c
        24052.70c
                       3.48374E-03
        24053.70c
                        3.95029E-04
```

Revision: 0

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

16032.70c 5.33276E-06 16033.70c 4.26936E-08 16034.70c 2.40994E-07 16034.70c 1.12352E-09 41093.70c 8.32108E-05 73181.70c 3.73835E-06 \$ tot 2.17619E- C Core Tank m2 13027.70c 5.80397E-02 29063.70c 2.14522E-05 29065.70c 9.56154E-06 14028.70c 1.22966E-04 14029.70c 6.24391E-06 14030.70c 4.11603E-06 26054.70c 3.91905E-06 26056.70c 6.15207E-05 26057.70c 1.42078E-06 26058.70c 1.89080E-07	-02
m2 13027.70c 5.80397E-02 29063.70c 2.14522E-05 29065.70c 9.56154E-06 14028.70c 1.22966E-04 14029.70c 6.24391E-06 14030.70c 4.11603E-06 26054.70c 3.91905E-06 26056.70c 6.15207E-05 26057.70c 1.42078E-06 26058.70c 1.89080E-07	
26058.70c 1.89080E-07	
25055.70c 7.17463E-06 30000.70c 1.20557E-05 \$ Tot 5.82903E- C Grid Plate	-02
m20 13027.70c 0.069877686 29063.70c 2.58277E-05 29065.70c 1.15117E-05 14028.70c 1.48047E-04 14029.70c 7.51744E-06 14030.70c 4.95555E-06 26054.70c 4.71840E-06 26056.70c 7.40687E-05 26057.70c 1.71057E-06 26058.70c 2.27645E-07 25055.70c 8.63800E-06 30000.70c 1.45146E-05 \$ Tot 7.01794E-	-02
C Grid Plate Spacer Tube m21 26054.70c 3.24300E-03 26056.70c 5.09082E-02 26057.70c 1.17569E-03 26058.70c 1.56463E-04 6000.70c 1.50157E-04 25055.70c 8.20712E-04 14028.70c 7.40325E-04 14029.70c 3.75919E-05 14030.70c 2.47808E-05 24050.70c 6.78197E-04 24052.70c 1.30784E-02 24053.70c 1.48298E-03 24054.70c 3.69145E-04 28058.70c 5.75297E-03 28060.70c 2.21603E-03 28061.70c 9.63294E-05 28062.70c 3.07140E-04 28064.70c 7.82196E-05 15031.70c 3.27530E-05 16032.70c 2.00198E-05 16034.70c 9.04718E-07 16036.70c 4.21780E-09 41093.70c 3.12383E-04	02
73181.70c 1.40342E-05 \$ tot 8.16965E-C Al Shim m22 13027.70c 5.98555E-02 29063.70c 2.21234E-05 29065.70c 9.86068E-06 14028.70c 1.26813E-04 14029.70c 6.43926E-06 14030.70c 4.24481E-06 26054.70c 4.04166E-06 26056.70c 6.34455E-05 26057.70c 1.46523E-06 25055.70c 7.39910E-06 30000.70c 1.24328E-05 \$ Tot 6.01138E-	-02

Revision: 0

Space Reactor-SPACE

```
C
     Reflectors
C Lower Side Reflector
          13027.70c 1.06083E-05
56130.70c 1.80020E-10
          56132.70c 1.71528E-10
56134.70c 4.10479E-09
56135.70c 1.11952E-08
          56136.70c 1.33385E-08
56137.70c 1.90753E-08
          56138.70c 1.21765E-07
          5010.70c 9.75675E-09
5011.70c 3.92721E-08
          20040.70c 2.10263E-05
20042.70c 1.40333E-07
20043.70c 2.92812E-08
          20044.70c 4.52449E-07
20046.70c 8.67592E-10
          20048.70c 4.05599E-08
27059.70c 5.39646E-08
24050.70c 1.41738E-08
          24052.70c 2.73329E-07
24053.70c 3.09933E-08
          24054.70c
                             7.71488E-09
                            1.15392E-08
5.14320E-09
           29063.70c
          29065.70c
          26054.70c 4.37148E-06
26056.70c 6.86229E-05
          19040.70c 1.58616E-11
           19041.70c
                              9.12406E-09
          3006.70c 2.29096E-08
3007.70c 2.82552E-07
71175.70c 5.90195E-09
          71176.70c 1.56925E-10
          12024.70c 3.44528E-08
12025.70c 4.36167E-09
          12026.70c 4.80219E-09
25055.70c 1.92963E-08
42092.70c 8.19883E-09
          42094.70c 5.11046E-09
42095.70c 8.79552E-09
          42096.70c 9.21540E-09
42097.70c 5.27620E-09
42098.70c 1.33314E-08
          42100.70c 5.32040E-09
11023.70c 1.38336E-07
28058.70c 3.32007E-07
          28060.70c 1.27889E-07
28061.70c 5.55923E-09
          28062.70c
                            1.77252E-08
4.51410E-09
          28064.70c
          14028.70c 1.87988E-06
14029.70c 9.54558E-08
14030.70c 6.29252E-08
                            3.38768E-10
5.96474E-09
          38084.70c
          38086.70c
          38087.70c 4.23460E-09
          38088.70c 4.99562E-08
22046.70c 9.86374E-08
          22047.70c 8.89530E-08
22048.70c 8.81400E-07
22049.70c 6.46822E-08
          22050.70c 6.19323E-08
23000.70c 4.57824E-06
39089.70c 1.31163E-07
          6000.70c 8.77787E-02 $ tot 8.78956E-02
С
C Upper Side Reflector
             13027.70c 1.04820E-05
           56130.70c 1.77877E-10
          56132.70c 1.69486E-10
56134.70c 4.05593E-09
56135.70c 1.10619E-08
56136.70c 1.31797E-08
```

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
56137.70c 1.88482E-08
56138.70c 1.20315E-07
       5010.70c 9.64060E-09
       5011.70c 3.88046E-08
20040.70c 2.07760E-05
       20042.70c 1.38663E-07
20043.70c 2.89327E-08
20044.70c 4.47063E-07
                    8.57264E-10
4.00771E-08
       20046.70c
       20048.70c
       27059.70c
                    5.33222E-08
                    1.40051E-08
2.70075E-07
       24050.70c
       24052.70c
                     3.06243E-08
       24053.70c
       24054.70c
                      7.62304E-09
                    1.14019E-08
       29063.70c
                    5.08197E-09
4.31944E-06
       29065.70c
       26054.70c
       26056.70c 6.78060E-05
26057.70c 1.56594E-06
26058.70c 2.08397E-07
                    1.24924E-07
1.56727E-11
       19039.70c
       19040.70c
       19041.70c 9.01544E-09
       3006.70c 2.26369E-08
3007.70c 2.79188E-07
                    2.26369E-08
                    5.83169E-09
1.55057E-10
       71175.70c
       71176.70c
       12024.70c
                    3.40427E-08
       12025.70c 4.30974E-09
12026.70c 4.74503E-09
       25055.70c 1.90666E-08
                     8.10123E-09
5.04962E-09
       42092.70c
       42094.70c
                    8.69081E-09
9.10570E-09
       42095.70c
       42096.70c
       42097.70c 5.21339E-09
                     1.31727E-08
5.25707E-09
       42098.70c
       42100.70c
                    1.36689E-07
3.28055E-07
       11023.70c
       28058.70c
       28060.70c 1.26366E-07
                    5.49305E-09
1.75142E-08
       28061.70c
       28062.70c
                    4.46036E-09
1.85750E-06
       28064.70c
       14028.70c
       14029.70c
                    9.43195E-08
       14030.70c
                    6.21761E-08
3.34735E-10
       38084.70c
       38086.70c
                     5.89374E-09
       38087.70c
                     4.18419E-09
                     4.93615E-08
       38088.70c
                    9.74632E-08
8.78941E-08
       22046.70c
       22047.70c
       22048.70c
                    8.70907E-07
                    6.39122E-08
6.11951E-08
       22049.70c
       22050.70c
                    4.52374E-06
1.29601E-07
       23000.70c
       39089.70c
       6000.70c 8.67337E-02 $ tot 8.68493E-02
C Lower Top Reflector
m10
      13027.70c 1.07542E-05
       56130.70c
                     1.82495E-10
       56132.70c 1.73887E-10
                    4.16123E-09
1.13491E-08
       56134.70c
       56135.70c
       56136.70c 1.35219E-08
                    1.93376E-08
1.23439E-07
       56137.70c
       56138.70c
       5010.70c
                    9.89090E-09
       5011.70c
                    3.98121E-08
       20040.70c 2.13154E-05
                    1.42263E-07
2.96838E-08
       20042.70c
       20043.70c
                    4.58670E-07
       20044.70c
       20046.70c
                     8.79521E-10
```

Revision: 0

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
4.11176E-08
5.47066E-08
        20048.70c
        27059.70c
        24050.70c 1.43687E-08
                     2.77087E-07
3.14194E-08
        24052.70c
        24053.70c
        24054.70c
                     7.82095E-09
        29063.70c
                      1.16979E-08
                     5.21391E-09
        29065.70c
                     4.43159E-06
6.95665E-05
        26054.70c
        26056.70c
        26057.70c 1.60659E-06
        26058.70c 2.13808E-07
19039.70c 1.28167E-07
        19040.70c 1.60796E-11
19041.70c 9.24951E-09
        3006.70c 2.32246E-08
        3007.70c 2.86436E-07
        71175.70c 5.98310E-09
        71176.70c 1.59082E-10
        12024.70c 3.49265E-08
12025.70c 4.42164E-09
                     4.86822E-09
1.95617E-08
        12026.70c
        25055.70c
        42092.70c 8.31156E-09
                     5.18073E-09
8.91645E-09
        42094.70c
        42095.70c
                     9.34211E-09
5.34875E-09
        42096.70c
        42097.70c
                     1.35147E-08
        42098.70c
       42100.70c 5.39356E-09
11023.70c 1.40238E-07
        28058.70c 3.36572E-07
        28060.70c
                      1.29647E-07
                     5.63566E-09
        28061.70c
                     1.79690E-08
4.57616E-09
        28062.70c
        28064.70c
        14028.70c 1.90573E-06
                     9.67682E-08
6.37903E-08
        14029.70c
        14030.70c
                     3.43426E-10
6.04675E-09
        38084.70c
        38086.70c
        38087.70c
                     4.29283E-09
                     5.06431E-08
9.99936E-08
        38088.70c
        22046.70c
                     9.01760E-08
8.93518E-07
        22047.70c
        22048.70c
        22049.70c 6.55715E-08
        22050.70c 6.27838E-08
23000.70c 4.64119E-06
39089.70c 1.32966E-07
        6000.70c 8.89856E-02 $ tot 8.91041E-02
C Upper Top Reflector
m11 13027.70c 1.01375E-05
        56130.70c 1.72031E-10
        56132.70c 1.63916E-10
56134.70c 3.92262E-09
        56135.70c 1.06984E-08
56136.70c 1.27465E-08
        56137.70c 1.82288E-08
        56138.70c 1.16361E-07
5010.70c 9.32375E-09
        5011.70c 3.75293E-08
        20040.70c
                     2.00932E-05
        20042.70c 1.34105E-07
        20043.70c 2.79818E-08
20044.70c 4.32370E-07
20046.70c 8.29089E-10
                     3.87599E-08
5.15697E-08
        20048.70c
        27059.70c
                     1.35448E-08
2.61198E-07
        24050.70c
        24052.70c
        24053.70c
                     2.96178E-08
                     7.37250E-09
1.10271E-08
        24054.70c
        29063.70c
                     4.91494E-09
        29065.70c
        26054.70c
                      4.17748E-06
```

Revision: 0

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
26056.70c 6.55775E-05
26057.70c 1.51447E-06
       26058.70c 2.01548E-07
       19039.70c 1.20818E-07
19040.70c 1.51576E-11
       19041.70c 8.71914E-09
        3006.70c
                     2.18929E-08
       3007.70c 2.70012E-07
       71175.70c 5.64002E-09
71176.70c 1.49961E-10
       12024.70c 3.29238E-08
                     4.16810E-09
4.58907E-09
       12025.70c
       12026.70c
       25055.70c 1.84400E-08
       42092.70c
                      7.83497E-09
       42094.70c 4.88366E-09
       42095.70c 8.40517E-09
42096.70c 8.80643E-09
       42097.70c 5.04205E-09
       42098.70c
                      1.27398E-08
       42100.70c 5.08429E-09
                     1.32196E-07
3.17273E-07
       11023.70c
       28058.70c
       28060.70c
                     1.22213E-07
                     5.31251E-09
1.69386E-08
        28061.70c
       28062.70c
       28064.70c
                     4.31376E-09
1.79645E-06
       14028.70c
       14029.70c
                     9.12195E-08
                     6.01326E-08
3.23734E-10
       14030.70c
       38084.70c
       38086.70c 5.70003E-09
                     4.04667E-09
4.77392E-08
        38087.70c
       38088.70c
                     9.42599E-08
8.50053E-08
       22046.70c
       22047.70c
       22048.70c 8.42283E-07
                     6.18116E-08
5.91838E-08
       22049.70c
       22050.70c
       23000.70c 4.37506E-06
39089.70c 1.25342E-07
       6000.70c 8.38831E-02 $ tot 8.39948E-02
C Bottom Reflector
      13027.70c 9.97828E-06
56130.70c 1.69329E-10
m12
       56132.70c 1.61342E-10
       56134.70c 3.86102E-09
56135.70c 1.05303E-08
       56136.70c 1.25463E-08
       56137.70c 1.79425E-08
56138.70c 1.14533E-07
       5010.70c
5011.70c
                     9.17731E-09
                     3.69398E-08
       20040.70c 1.97776E-05
       20042.70c 1.31999E-07
20043.70c 2.75423E-08
                     4.25579E-07
8.16067E-10
       20044.70c
       20046.70c
       20048.70c
                     3.81511E-08
                     5.07597E-08
1.33321E-08
       27059.70c
       24050.70c
       24052.70c 2.57096E-07
24053.70c 2.91526E-08
24054.70c 7.25670E-09
       29063.70c 1.08539E-08
29065.70c 4.83775E-09
26054.70c 4.11187E-06
                     6.45475E-05
1.49068E-06
       26056.70c
       26057.70c
                     1.98383E-07
1.18921E-07
       26058.70c
       19039.70c
       19040.70c 1.49196E-11
       19041.70c 8.58219E-09
3006.70c 2.15490E-08
        3007.70c 2.65771E-07
        71175.70c 5.55144E-09
```

Revision: 0

С

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
71176.70c 1.47605E-10
12024.70c 3.24067E-08
12025.70c 4.10263E-09
          12026.70c 4.51700E-09
25055.70c 1.81504E-08
          42092.70c 7.71192E-09
42094.70c 4.80696E-09
42095.70c 8.27316E-09
          42096.70c 8.66811E-09
42097.70c 4.96286E-09
          42098.70c 1.25397E-08
          42100.70c 5.00443E-09
11023.70c 1.30120E-07
          28058.70c 3.12290E-07
28060.70c 1.20293E-07
          28061.70c 5.22907E-09
          28062.70c 1.66726E-08
28064.70c 4.24601E-09
14028.70c 1.76824E-06
14029.70c 8.97868E-08
14030.70c 5.91881E-08
          38084.70c 3.18649E-10
38086.70c 5.61050E-09
          38087.70c 3.98312E-09
          38088.70c 4.69894E-08
22046.70c 9.27794E-08
          22047.70c 8.36702E-08
22048.70c 8.29054E-07
          22049.70c 6.08408E-08
22050.70c 5.82542E-08
23000.70c 4.30635E-06
          39089.70c 1.23373E-07
          6000.70c 8.25656E-02 $ tot 8.26756E-02
C Additional Bottom Reflectors
     Al Upper Reflector
       13027.70c 5.98746E-02
          29063.70c 2.21304E-05
29065.70c 9.86383E-06
          14028.70c 1.26853E-04
14029.70c 6.44131E-06
14030.70c 4.24616E-06
26054.70c 4.04295E-06
26056.70c 6.34657E-05
          26057.70c 1.46570E-06
          25055.70c
                              7.40146E-06
          30000.70c 1.24368E-05 $ Tot 6.01329E-02
     Al Lower Reflector
m31 13027.70c 5.97358E-02
29063.70c 2.20791E-05
29065.70c 9.84096E-06
14028.70c 1.26559E-04
          14029.70c 6.42638E-06
14030.70c 4.23632E-06
          26054.70c 4.03358E-06
26056.70c 6.33185E-05
26057.70c 1.46230E-06
                            7.38430E-06
1.24080E-05
          25055.70c
                                                     $ Tot 5.99935E-02
          30000.70c
C SS304 Reflector
m32 26054.70c 3.51905E-03
26056.70c 5.52415E-02
          26057.70c 1.27577E-03
26058.70c 1.69781E-04
          6000.70c 1.60142E-04
          25055.70c 8.75287E-04
14028.70c 7.89554E-04
14029.70c 4.00916E-05
          14030.70c 2.64287E-05
24050.70c 7.63478E-04
          24052.70c 1.47229E-02
24053.70c 1.66946E-03
          24054.70c 4.15564E-04
                            5.29886E-03
2.04111E-03
          28058.70c
          28060.70c
          28061.70c 8.87257E-05
28062.70c 2.82896E-04
```

Revision: 0

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
7.20454E-05
3.49310E-05
        28064.70c
        15031.70c
        16032.70c 2.13510E-05
        16033.70c 1.70934E-07
16034.70c 9.64879E-07
        16034.70c 4.49827E-09
                                           $ tot 8.75101E-02
    Iron Table
m33 26054.70c 4.66345E-03
        26056.70c 7.32063E-02
26057.70c 1.69065E-03
        26058.70c 2.24995E-04
        6000.70c 9.43427E-04
        12024.70c 1.47307E-03
        12025.70c 1.86488E-04
12026.70c 2.05324E-04
15031.70c 2.92673E-05
                       3.35422E-05
2.68536E-07
        16032.70c
        16033.70c
        16034.70c 1.51581E-06
        16036.70c
                        7.06673E-09
        14028.70c 7.06673E-09
14028.70c 2.97691E-04
        14029.70c 1.51160E-05
14030.70c 9.96460E-06
        29063.70c 9.86750E-05
        9234.70c 4.39808E-05
92234.70c 4.67753E-04
92235.70c 4.47223E-02
92236.70c 1.14750E-04
                                           $ tot 8.31237E-02
m200
        92238.70c 2.67865E-03
48106.70c 5.79249E-04
48108.70c 4.12425E-04
                                           $ total 4.79835E-02
m201
        48110.70c 5.78786E-03
48111.70c 5.93151E-03
48112.70c 1.11818E-02
                       5.66274E-03
1.33135E-02
        48113.70c
        48114.70c
        48116.70c 3.47086E-03 $ total 4.63399E-02
    Scattering Cards
mt1 o2/u.10t u/o2.10t
        al27.12t
mt2
mt8
       grph.10t
mt9
       grph.10t
mt10 grph.10t
mt11 grph.10t
mt12 grph.10t
mt20
         al27.12t
        al27.12t
mt22
mt30 al27.12t
mt31 al27.12t
kcode 1000000 1 150 2150
ksrc 0 5.25 5 0 10.5 10 0 -5.25 5 0 -10.5 10 6.0 0 5 10.5 0 10 -6.0 0 5 -10.5 0 10
         6.5 5.25 5 -6.5 5.25 10 -6.5 -5.25 5 6.5 -5.25 10
C rand seed=7065399757867 $ r2
C rand seed=5724484131590 $ r3
C rand seed=417647895433 $ r4
C rand seed=8132049697893 $ r5
C rand seed=8663498807872 $ r6
C rand seed=7447087897166 $ r7
f4:n 700
fm4 1 200 -6
f14:n 701
fm14 1 200 -6
f24:n 702
fm24 1 200 -6
f34:n 703
fm34 1 200 -6
f44:n 704
fm44 1 200 -6
f54:n 705
fm54 1 200 -6
f64:n 706
fm64 1 200 -6
f74:n 707
fm74 1 200 -6
f84:n
          708
```

Revision: 0

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

fm84 1 200 -6 f94:n 709 fm94 1 200 -6

Revision: 0 Date: March 31, 2013

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Simple Model

```
SCCA-FUND-EXP-002-001 and HEU-COMP-FAST-002
С
  Cell Cards
   1 6.54398E-02 (22 -23 -25) u=10 imp:n=1
        -22:(25 22 -23 ):23 u=10 imp:n=1 $void around pellet
       -21 22 -23 fill=10 u=12 imp:n=1
   15 7.61160E-02 (1 -24 -20 21):(1 -22 -21):(23 -24 -21) u=12 imp:n=1 $Fuel tube and end caps
     -1:(1 20 -24):24 u=12 imp:n=1
   0 -21 22 -23 fill=10 u=13 imp:n=1
8
  15 7.61160E-02 21:-22:23 u=13 imp:n=1 $Fuel tube and end caps for u=13
10 0 -12 fill=12 u=1 imp:n=1
     -13 fill=13 (-3.766 -11.458 0) imp:n=1
11 0
12 0
     -14 fill=13 (3.766 -11.458 0) imp:n=1
13 0
      -15 fill=13 (3.766 11.458 0) imp:n=1
      -16 fill=13 (-3.766 11.458 0) imp:n=1
      -17 fill=13 (-8.039 -8.989 0) imp:n=1
15
      -18 fill=13 (8.039 -8.989 0) imp:n=1
16
   0
17
      -19 fill=13 (-8.039 8.989 0) imp:n=1
      -30 fill=13 (8.039 8.989 0) imp:n=1
      -31 fill=13 (-11.805 -2.467 0) imp:n=1
2.0 0
      -32 fill=13 (11.805 -2.467 0) imp:n=1
21 0 -33 fill=13 (-11.805 2.467 0) imp:n=1
22 0
      -34 fill=13 (11.805 2.467 0) imp:n=1
   Core Assembly
30 0 -11 lat=2 u=2 imp:n=1 fill= -10:10 -10:10 0:0
   2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 $ROW 3
       2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 $ROW 4
        2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 $ROW 9
            2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 $ROW 10
             2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 $ROW 11
             2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 $ROW 12
              2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 $ROW 13
               2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 $ROW 14
                2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 $ROW 15
                 Core Tank
31 0 -151 1 -153 13 14 15 16 17 18 19 30 31 32 33 34 fill=2 imp:n=1
140 2 5.82903E-02 (-153 154 -150 151):(-154 152 -150) imp:n=1 $Core Tank
33 0 150 -210 -153 213 imp:n=1
34 0 -152 -150 220 213 250 imp:n=1
81 0 -1 -151 154 220 imp:n=1
C Reflectors
50 10 8.89856E-02 -200 237 imp:n=1
                              $Lower Top reflector
  10 8.89856E-02 -238 -200 imp:n=1
78 0 -237 238 -200 imp:n=1
51 11 8.38831E-02 200 -201 237 imp:n=1 $Upper Top Reflettor 79 11 8.38831E-02 -238 -201 imp:n=1
80 0 -237 238 -201 imp:n=1
52 8 8.77706E-02 210 -212
        225 227 229 231 233 235 imp:n=1 $Lower Side Reflector
65 8 8.77706E-02 -212 210 -226 711 713 imp:n=1 $ 4
66 8 8.77706E-02 -212 210 -228 710 712 714 imp:n=1 $ 3
```

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
67 8 8.77706E-02 -212 210 -230 701 703 imp:n=1 $ 2 68 8 8.77706E-02 -212 210 -232 700 702 704 imp:n=1 $ 1
69 8 8.77706E-02 -212 210 -234 imp:n=1
       -212 210 -235 imp:n=1
-212 210 -233 234 imp:n=1
72 0
73 0 -212 210 -231 232 imp:n=1
        -212 210 -229 230 imp:n=1
74
    0 -212 210 -227 228 imp:n=1
75
       -212 210 -225 226 imp:n=1
76 0
700 200 4.79835E-02 -700 imp:n=1
701 200 4.79835E-02 -701 imp:n=1
702 200 4.79835E-02 -702 imp:n=1
703 200 4.79835E-02 -703 imp:n=1
704 200 4.79835E-02 -704 imp:n=1
705 200 4.79835E-02 -705 imp:n=1
706 200 4.79835E-02 -706 imp:n=1
707 200 4.79835E-02 -707 imp:n=1
708 200 4.79835E-02 -708 imp:n=1
709 200 4.79835E-02 -709 imp:n=1
710 201 4.63399E-02 705 -710 imp:n=1
711 201 4.63399E-02 706 -711 imp:n=1
712 201 4.63399E-02 707 -712 imp:n=1
713 201 4.63399E-02 708 -713 imp:n=1
714 201 4.63399E-02 709 -714 imp:n=1
53 9 8.77706E-02 210 -211 imp:n=1 $Upper Side Reflector 54 12 8.25656E-02 -220 imp:n=1 $bottom Reflector
C Support Structure/Additional Reflectors
60 30 6.01489E-02 -250 imp:n=1 $Uppwer Al Plate
61 31 6.00094E-02 -251 imp:n=1 $Lower Al Plate
62 32 8.75101E-02 -252 imp:n=1 $SS304 Plate
63 33 8.31237E-02 -253 254 imp:n=1 $Iron Table
64 0 -999 #60 #61 #62 #63 212 211 200 201 imp:n=1
999 0 999 imp:n=0
    Surface Cards
    pz 0.
                  $bottom of core tank
20
     cz 0.635
cz 0.584
                    $OR Clad
                  $IR Clad
21
                   $top of bottom cap/Bottom of Fuel
22
    pz 0.3
2.3
     pz 30.18
                    $bottom of top cap/Top of Fuel
     pz 30.48
                   $Top of fuel tube
     cz 0.5705 $OR of Pellet
rpp -0.9 0.9 -0.9 0.9 0.2978 1.4472 $pellet lattice box
25
2.8
     rhp 0 0 -10 0 0 50 0.753 0 0 rhp 0 0 -11 0 0 52 1 0 0
11
12
     rcc -3.766 -11.458 0 0 0 30.48 0.635
1.3
     rcc 3.766 -11.458 0 0 0 30.48 0.635
14
     rcc 3.766 11.458 0 0 0 30.48 0.635
15
     rcc -3.766 11.458 0 0 0 30.48 0.635
16
     rcc -8.039 -8.989 0 0 0 30.48 0.635
     rcc 8.039 -8.989 0 0 0 30.48 0.635
18
     rcc -8.039 8.989 0 0 0 30.48 0.635 rcc 8.039 8.989 0 0 0 30.48 0.635
19
30
    rcc -11.805 -2.467 0 0 0 30.48 0.635
    rcc 11.805 -2.467 0 0 0 30.48 0.635 rcc -11.805 2.467 0 0 0 30.48 0.635
33
    rcc 11.805 2.467 0 0 0 30.48 0.635
34
C Core Tank
150 cz 12.98 $OR Core Tank
151 cz 12.726 $IR Core Tank
152 pz -23.224 $Bottom of Core Tank 154 pz -22.86 $top of bottom of core tank
153 pz 30.816 $Top of Core Tank
C Reflectors
   Top Reflectors
                       0 0 15.25 38.1 $Lower Top Reflector
200 rcc 0 0 30.816
                       0 0 8.36
201 rcc 0 0 46.066
                                     25.4 $Upper Top Reflector
C Side Reflectors
210 cz 13.0675 $IR
211 rcc 0 0 23.186  0 0 7.63  38.6  $Upper Side Reflector
212 rcc 0 0 -23.444 0 0 46.63 40.9675 $Lower Side Reflector 213 pz -23.444 $surface for creating void regions
C Bottom Reflector
220 rcc 0 0 -22.86 0 0 22.86 12.71 $bottom reflector
```

Revision: 0

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
C Foil Holes in lower side and top reflector
225 rcc 0 0 7.61 -50 0 0 0.635 $west hole
226 rcc 0 0 7.61 -50 0 0 0.555 $west plug
227 rcc 0 0 7.61 -40 69.3 0 0.635 $nnw hole
228 rcc 0 0 7.61 -40 69.3 0 0.555 $nnw plug
229 rcc 0 0 7.61 40 69.3 0 0.635 $nne hole
230 rcc 0 0 7.61 40 69.3 0 0.555 $nne plug
231 rcc 0 0 7.61 50 0 0 0.635 $west hole
232 rcc 0 0 7.61 50 0 0 0.555 $west plug
233 rcc 0 0 7.61 40 -69.3 0 0.635 $sse hole
234 rcc 0 0 7.61 40 -69.3 0 0.555 $sse plug
235 rcc 0 0 7.61 -40 -69.3 0 0.635 $ssw hole
236 rcc 0 0 7.61 -40 -69.3 0 0.555 $ssw plug
237 cz 0.635
238 cz 0.555
239 pz 45.96
240 pz 54.32
C Additional Bottom Reflectors
250 rcc 0 0 -25.164 0 0 1.94 10.8 $Al Upper Plate
251 rcc 0 0 -25.794 0 0 0.63 22.86 $Al Lower Plate
252 rcc 0 0 -28.174 0 0 2.38 22.86 $SS304 Plate
253 rpp -60.95 60.95 -60.95 60.95 -24.82 -23.55 $Iron Table
254 cz 13.335
C Bare Foils
700 rcc 13.5625 0 7.61 0.01 0 0 0.375
701 rcc 9.53125 16.50860926 7.61 0.005 0.008660254 0
                                                                      0.375
    702
703
704 rcc 37.0625 0 7.61 0.01 0 0 0.375
C Covered Foils
705 rcc -6.78125
                     11.74546954 7.61 -0.005 0.008660254 0 0.375
                                           -0.01 1.22515E-18 0 0.375
706 rcc -19.0625 2.33544E-15 7.61
707 rcc -12.53125 21.70476168 7.61 -0.005 0.008660254 0 0.375
708 rcc -31.0625 3.80562E-15 7.61 -0.01 1.22515E-18 0 0.375
709
     rcc -18.53125 32.09706653 7.61
                                            -0.005 0.008660254 0 0.375
C Cd Covers
710 rcc -6.75575
                     11.70130224
                                    7.61 -0.056 0.096994845 0 0.38
                                    7.61 -0.112 1.37217E-17 0 0.38
7.61 -0.056 0.096994845 0 0.38
711
     rcc -19.0115
                     2.32919E-15
    rcc -12.50575 21.66059439
712
                                    7.61 -0.112 1.37217E-17 0 0.38
7.61 -0.056 0.096994845 0 0.38
713 rcc -31.0115 3.79937E-15
714 rcc -18.50575 32.05289923
999
     rpp -500 500 -500 500 -500 500
C
   Data Cards
C Fuel
   92234.70c 2.21403E-04
      92235.70c 2.03324E-02
92236.70c 1.02154E-04
                 1.15733E-03
      92238.70c
      8016.70c
                 4.35205E-02
      8017.70c 1.06012E-04 $ Tot 6.54398E-02
C
   Fuel Clad
m15
      26054.70c 3.02148E-03
      26056.70c 4.74308E-02
26057.70c 1.09538E-03
      26058.70c 1.45775E-04
      6000.70c 1.39900E-04
      25055.70c
                  7.64651E-04
      14028.70c 6.89755E-04
                 3.50241E-05
2.30881E-05
      14029.70c
      14030.70c
                 6.31871E-04
      24050.70c
      24052.70c
                  1.21850E-02
                 1.38168E-03
      24053.70c
                 3.43930E-04
5.35999E-03
2.06466E-03
      24054.70c
      28058.70c
      28060.70c
                  8.97493E-05
2.86160E-04
      28061.70c
      28062.70c
                  7.28766E-05
3.05157E-05
      28064.70c
      15031.70c
      16032.70c
                 1.86523E-05
                  1.49328E-07
8.42918E-07
      16033.70c
      16034.70c
      16036.70c
                 3.92969E-09
      41093.70c
                  2.91044E-04
```

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
73181.70c 1.30755E-05 $tot 7.61160E-02
C Core Tank
m2 13027.70c 5.80397E-02
        29063.70c 2.14522E-05
29065.70c 9.56154E-06
        14028.70c 1.22966E-04
14029.70c 6.24391E-06
14030.70c 4.11603E-06
        26054.70c 3.91905E-06
26056.70c 6.15207E-05
        26057.70c 1.42078E-06
        26058.70c 1.89080E-07
25055.70c 7.17463E-06
        30000.70c 1.20557E-05 $ Tot 5.82903E-02
   Reflectors
   **********
C Lower Side Reflector
     6000.70c 8.77706E-02 $ tot 8.77706E-02
m8
C Upper Side Reflector
      6000.70c 8.67421E-02 $ tot 8.67421E-02
C Lower Top Reflector
m10 6000.70c 8.89856E-02 $ tot 8.89856E-02
C Upper Top Reflector
m11 6000.70c 8.38831E-02 $ tot 8.38831E-02
C Bottom Reflector
C Additional Bottom Reflectors
    Al Upper Reflector
m30 13027.70c 5.98746E-02
29063.70c 2.21304E-05
29065.70c 9.86383E-06
        14028.70c 1.26853E-04
        14029.70c 6.44131E-06
14030.70c 4.24616E-06
       26054.70c 4.04295E-06
26056.70c 6.34657E-05
26057.70c 1.46570E-06
25055.70c 7.40146E-06
30000.70c 1.24368E-05
                                         $ Tot 6.01329E-02
C Al Lower Reflector
      13027.70c 5.97358E-02
29063.70c 2.20791E-05
m31
        29065.70c 9.84096E-06
14028.70c 1.26559E-04
14029.70c 6.42638E-06
14030.70c 4.23632E-06
26054.70c 4.03358E-06
        26056.70c 6.33185E-05
26057.70c 1.46230E-06
        25055.70c 7.38430E-06
30000.70c 1.24080E-05
                                          $ Tot 5.99935E-02
C SS304 Reflector
m32 26054.70c 3.51905E-03
26056.70c 5.52415E-02
        26057.70c 1.27577E-03
        26058.70c 1.69781E-04
6000.70c 1.60142E-04
        25055.70c 8.75287E-04
14028.70c 7.89554E-04
14029.70c 4.00916E-05
        14030.70c 2.64287E-05
24050.70c 7.63478E-04
        24050.70c
        24052.70c 1.47229E-02
                      1.66946E-03
4.15564E-04
        24053.70c
        24054.70c
        28058.70c 5.29886E-03
28060.70c 2.04111E-03
28061.70c 8.87257E-05
        28062.70c 2.82896E-04
28064.70c 7.20454E-05
        15031.70c 3.49310E-05
16032.70c 2.13510E-05
```

Revision: 0

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

```
16033.70c 1.70934E-07
16034.70c 9.64879E-07
         16034.70c 4.49827E-09 $ tot 8.75101E-02
     Iron Table
m33 26054.70c 4.66345E-03
         26056.70c 7.32063E-02
26057.70c 1.69065E-03
26058.70c 2.24995E-04
         6000.70c 9.43427E-04
12024.70c 1.47307E-03
         12025.70c 1.86488E-04
12026.70c 2.05324E-04
15031.70c 2.92673E-05
         16032.70c 3.35422E-05
16033.70c 2.68536E-07
16034.70c 1.51581E-06
         16036.70c 7.06673E-09
14028.70c 2.97691E-04
         14029.70c 1.51160E-05
14030.70c 9.96460E-06
29063.70c 9.86750E-05
         29065.70c 4.39808E-05
92234.70c 4.67753E-04
92235.70c 4.47223E-02
                                                  $ tot 8.31237E-02
m200
         92236.70c 4.4/223E-02

92236.70c 1.14750E-04

92238.70c 2.67865E-03

48106.70c 5.79249E-04

48108.70c 4.12425E-04

48110.70c 5.78786E-03

48111.70c 5.93151E-03

48112.70c 1.11818E-02
                                                 $ total 4.79835E-02
m201
         48113.70c 5.66274E-03
48114.70c 1.33135E-02
48116.70c 3.47086E-03
                                                $ total 4.63399E-02
C Scattering Cards
mt1 o2/u.10t u/o2.10t
mt2 al27.12t
mt8
         grph.10t
         grph.10t
mt9
mt10 grph.10t
mt11 grph.10t
mt12 grph.10t
mt30 al27.12t
mt31 al27.12t
kcode 1000000 1 150 2000
C kcode 100 1 10 150
ksrc 0 5.25 5 0 10.5 10 0 -5.25 5 0 -10.5 10
6.0 0 5 10.5 0 10 -6.0 0 5 -10.5 0 10
6.5 5.25 5 -6.5 5.25 10 -6.5 -5.25 5 6.5 -5.25 10
C rand seed=7065399757867 $ r2
C rand seed=5724484131590 $ r3
C rand seed=417647895433
                                             $ r4
C rand seed=8132049697893 $ r5
C rand seed=8663498807872 $ r6
C rand seed=7447087897166 $ r7
f4:n 700
fm4 1 200 -6
f14:n 701
fm14 1 200 -6
f24:n 702
fm24 1 200 -6
f74:n 707
fm74 1 200 -6
f84:n 708
fm84 1 200 -6
f94:n 709
fm94 1 200 -6
```

Revision: 0

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

A.4 Reactivity-Effects Configurations

The input decks for analysis of the graphite plug worth are the same as those used for the cadmium ratios as described in Section 3.3 but without the foils and with the adjustments discussed in Section 3.4.

A.5 Reactivity Coefficient Configurations

Reactivity coefficient measurements were not performed

A.6 Kinetics Parameter Configurations

Kinetics measurements were not performed.

A.7 Reaction-Rate Configurations

MCNP5 Input Decks for Evaluating ²³⁵U Fission Reaction-Rate Measurements:

The input decks for analysis of the radial and axial ²³⁵U fission reaction-rate measurements is that of the cadmium ratio measurements described in Section 3.3 but without the foils and with the following tally-card specifications appended to the end of the input deck:

```
Axial Activation of 235U Fission Foils Tally-
                                                   Radial Activation of 235U Fission Foils Tally-
                     Card
                                                                        Card
m1000 92235.70 -.932
                                                  m1000 92235.70 -.932
   92238.70 -.068
                                                     92238.70 -.068
fmesh4:n geom cyl origin 0 0 0.005
                                                  fmesh4:n geom cyl origin 0 0 7.61
    imesh 0.32 iints 1
                                                       axs 1 0 0 vec 0 0 1
                                                       imesh 0.375 iints 1
     jmesh 55 jints 5500
     kmesh 1 kints 1
                                                        jmesh 41 jints 4100
fm4 1 1000 -6
                                                       kmesh 1 kints 1
                                                  fm4 1 1000 -6
```

A.8 Power Distribution Configurations

The axial relative power distribution is the same as the relative fission rate as was measured in the core region (see Section A.7).

A.9 Isotopic Configurations

Isotopic measurements were not performed.

A.10 Configurations of Other Miscellaneous Types of Measurements

Other miscellaneous types of measurements were not performed.

Revision: 0

Date: March 31, 2013 Page 58 of 67

An identical tally card was used when evaluating the axial distribution of the induced fission in a uranium fission counter but the tally results were then averaged over the 2.5 cm detector length.

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

APPENDIX B: EVALUATED DATA FROM AXIAL DISTRIBUTION OF INDUCED FISSIONS IN A URANIUM FISSION COUNTER

B.1 DETAILED DESCRIPTION

A description of the measurements can be found in Section 1.7.

B.2 EVALUATION OF EXPERIMENTAL DATA

For the measurement of the axial induced fission in a uranium fission counter, as discussed in Section 1.7.2, an average of about 10,000 counts were collected on the fission counter. The measurement uncertainty in a single measurement can be approximated by taking the square root of the number of counts then dividing by the number of counts ($\sqrt{10,000}/10,000$). This yields an approximate measurement uncertainty of $\pm 1.0\%$. The axial detector location was evaluated by calculating the gradient of the measured data. This yielded a maximum 1σ uncertainty of 4.62% between Case 1 and 2. The detector could have moved radial during measurement buy a maximum of 0.716 cm. A 1σ uncertainty of ± 0.413 cm in the radial detector position was evaluated and was found to have a negligible effect. This was taken as the 1σ uncertainty in the detector location. A ± 0.1 cm uncertainty in the 2.5 cm detector length yields a maximum 1σ uncertainty of approximately 0.05%.

The effect of the fission counter enrichment was evaluated by comparing tallies for a 100 wt.% ²³⁵U counter to a 93.15 wt.% ²³⁵U counter. It was found that this 6.8 wt.% change in enrichment yields a maximum change in the normalized tally results of 5.0% for Case 1 and 10.4% for Case 2. When scaled to an enrichment uncertainty of 0.0177% (see Section 2.1.5.1), the effect of this uncertainty would be negligible. According to the experimenter, because the induced fission rates were normalized, the effect of composition of the fission counter would have a negligible effect.^a

Because the measurements were normalized, the uncertainty in all points except the normalization point (33.02 cm for Case 1 and 16.51 cm for Case 2) is multiplied by $\sqrt{2}$. Since the same uncertainty is applied to all measurement point this simplified approach is justified. The normalization uncertainty does not apply to the normalization point. There is also an additional uncertainty in the measurements of ± 0.01 , bounding with a uniform distribution, due to the rounding of the measured values. These uncertainties, added in quadrature, are summarized in Table B.2-1, given in Table B.2-2 and shown in Figure B.2-1. Measurements made in the reflector region are highlighted.

Revision: 0

Date: March 31, 2013 Page 59 of 67

^a Personal communication with J.T. Mihalczo, August 14, 2012.

The uncertainty in the normalization point was preserved, as can be seen in Table 2.7-1. It should be noted that if data were being used strictly for trending purposes the uncertainty on the normalization point would be zero, since this point has been forced to a value of 1.

Space Reactor-SPACE

Table B.2-1. Summary of Experimental Uncertainty in Axial Distribution of Induced Fission in a Uranium Fission Counter.

Uncertainty		Effect
Measurement	\pm	1.0%
Axial Detector Position	\pm	4.62%
Radial Detector Position	±	NEG
Detector Length	±	0.05%
Detector Enrichment	\pm	NEG
Detector Composition	±	NEG
Total	±	$4.73\%\sqrt{2^{(a)}}$
Total-Normalization Point		4.73%
Rounding	±	$0.01/\sqrt{3}$

⁽a) The $\sqrt{2}$ accounts for the added uncertainty from the normalization. This does not apply to the normalization point (33.02 cm for Case 1 and 16.51 cm for Case 2).

Table B.2-2. Uncertainty in Axial Distribution of the Induced Fission in a Uranium Fission Counter.

Distance from Bottom of Core ^(a)	Induced Fiss	sion ^(b) (A	Arbitrary
(cm)		ise 1 ^(c)	
5.0	0.12	±	0.010
7.5	0.09	±	0.008
10.0	0.12	±	0.010
12.6	0.1	±	0.009
15.1	0.11	±	0.009
17.7	0.11	±	0.009
20.2	0.1		0.009
22.8	0.1	±	0.009
25.3	0.13		0.010
27.8	0.4	±	0.027
30.4	0.67		0.045
32.9	0.88	±	0.059
35.4	0.99	±	0.066
39.7	0.94	±	0.048
40.5	1.01	±	0.068
42.8	1.02	±	0.065
45.8	0.87	±	0.058
48.1	0.69	±	0.047
50.7	0.44	±	0.030
53.2	0.23	±	0.016

- (a) Measured from the bottom of the stainless-steel fuel tubes.
 (b) The detector was ²³⁵U fission counter 2.5 cm long × 0.64 cm diameter unless noted otherwise.
- (c) Uncertainty is summarized in Table B-1.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure B.2-1. Uncertainty in Axial Distribution of the Induced Fission in a Uranium Fission Counter.

B.3 MODEL SPECIFICATIONS

B.3.1 Description of the Model Simplifications

The model used for axial fission counter measurements was the same as that used for the radial uranium foil activation measurements but the tallies were modeled using a mesh of cells superimposed over the geometry that had a radius of 0.32 cm and extended from the bottom of the core tank to the top of the top reflector. Each cell had a height of 0.01 cm. Cell-averaged flux tallies were used. A tally multiplier for the ²³⁵U fission cross section was also used. Tally results were then averaged over the 2.5 cm active length of the uranium fission counter. It is believed that this method for modeling the reaction-rate distribution would have a negligible bias. The simplification bias on the measurement due to geometry simplifications for the detailed and simple models is given in Table B.3-1. Statistically insignificant biases were not included in Table B.3-1 but the associated bias uncertainty was preserved.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Table B.3-1. Simplification Bias of Relative Axial Distribution of the Induced Fission in a Uranium Fission Counter.

Distance from			Simplification	on Bias ^(a)		
Bottom of Core						
(cm)	Deta	ailed Mo	del	Sim	iple Mo	odel
5.0	-	士	< 0.001	-0.003	±	< 0.001
7.5	0.001	\pm	< 0.001	-0.003	\pm	< 0.001
10.0	0.001	±	< 0.001	-0.003	±	< 0.001
12.6	0.001	±	< 0.001	-0.003	±	< 0.001
15.1	0.001	±	< 0.001	-0.003	±	< 0.001
17.7	0.001	±	< 0.001	-0.003	±	< 0.001
20.2	0.001	±	< 0.001	-0.003	±	< 0.001
22.8	0.001	±	< 0.001	-0.003	±	< 0.001
25.3	0.001	±	< 0.001	-0.003	±	< 0.001
27.8	0.001	±	< 0.001	-0.003	±	< 0.001
30.4	0.001	±	< 0.001	0.005	±	< 0.001
32.9	0.001	±	< 0.001	0.010	±	< 0.001
35.4	-	±	< 0.001	0.006	±	< 0.001
39.7	-0.001	±	< 0.001	-0.002	±	< 0.001
40.5	-0.001	±	< 0.001	-0.003	±	< 0.001
42.8	-0.002	±	< 0.001	-0.008	±	< 0.001
45.8	-0.003	±	< 0.001	-0.008	±	< 0.001
48.1	-0.004	±	< 0.001	-0.011	±	< 0.001
50.7	-0.006	±	< 0.001	-0.009	±	< 0.001
53.2	-0.009	±	< 0.001	-0.012	±	< 0.001

⁽a) Calculated by comparing as-built model results to detailed and simple model results.

B.3.2 Dimensions

The dimensions for the detailed and simple models were the same as those for the radial foil activation measurements (see Section 3.7.2). For the axial activation measurements the plugs in the top reflectors were removed.

B.3.3 Material Data

The material data for the detailed and simple models were the same as those used for the evaluation of the radial foil activation measurements (see Sections 3.7.3).

B.3.4 Temperature Data

The temperature was the same as the radial foil activation measurements (see Section 3.7.4).

B.3.5 Experimental and Model Reaction-Rate Distribution Values

The expected values of the induced fission in uranium-fission-counter measurements are found by applying the biases in Table B.3-1 to the experimental results. The uncertainty in the model is found by adding in quadrature the uncertainty in the experimental results, discussed in Section B.2, and the bias uncertainty given in Table B.3-1. The expected results are given in Table B.3-2 and Figure B.3-1.

Revision: 0

Date: March 31, 2013 Page 62 of 67

Space Reactor-SPACE

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Measurements in the core region are fission rates. Measurements above the top of the core region are highlighted.

Table B.3-2. Expected Relative Axial Distribution of the Induced Fission in a Uranium Fission Counter. (a)

Distance from	Induced	Fission	in Fission C	Counter ^(c) (A	Arbitra	ry Units)		
Bottom of Core ^(b) (cm)	Deta	iled Mo	del ^(d)	Simple Model ^(d)				
5.0	0.12	±	0.01	0.12	±	0.01		
7.5	0.09	±	0.01	0.09	±	0.01		
10.0	0.12	±	0.01	0.12	±	0.01		
12.6	0.10	±	0.01	0.10	±	0.01		
15.1	0.11	±	0.01	0.11	±	0.01		
17.7	0.11	±	0.01	0.11	±	0.01		
20.2	0.10	±	0.01	0.10	±	0.01		
22.8	0.10	±	0.01	0.10	±	0.01		
25.3	0.13	±	0.01	0.13	±	0.01		
27.8	0.40	±	0.03	0.40	±	0.03		
30.4	0.67	±	0.05	0.68	±	0.05		
32.9	0.88	±	0.06	0.89	±	0.06		
35.4	0.99	±	0.07	1.00	±	0.07		
39.7	0.94	±	0.05	0.94	±	0.05		
40.5	1.01	±	0.07	1.01	±	0.07		
42.8	1.02	±	0.07	1.01	±	0.07		
45.8	0.87	±	0.06	0.86	±	0.06		
48.1	0.69	±	0.05	0.68	±	0.05		
50.7	0.43	±	0.03	0.43	±	0.03		
53.2	0.22	±	0.02	0.22	±	0.02		

⁽a) These are relative fission rates in the core and relative radial activation of ²³⁵U in the reflector.

⁽b) Measured from the bottom of the stainless-steel fuel tubes.

⁽c) The detector was a 235 U fission counter 2.5 cm long \times 0.64 cm in diameter.

⁽d) The total uncertainty includes the experimental and bias uncertainties added in quadrature.

SCCA-SPACE-EXP-002 CRIT-SPEC-REAC-RRATE

Figure B.3-1. Relative Axial Distribution of the Induced Fission in a Uranium Fission Counter.

B.4 RESULTS OF SAMPLE CALCULATIONS

The relative axial induced fission in the uranium fission counter distributions was evaluated using models as described in Section B.3 in MCNP5-1.60 and ENDF/B-VII.0 neutron cross section libraries. An fmesh cell flux tally and a fission cross section tally multiplier were used to simulate the measurements. An fmesh is a mesh of cells superimposed over a geometry for the purpose of performing tallies. A total of 2,000 cycles were run, skipping the first 150 cycles, with 1,000,000 histories per cycle. Seven different random numbers were used for each calculation. The variance weighted average of the seven tally results was taken for the calculated distributions.

The fmesh extended from the bottom of the core to the top of the top reflector for the axial measurements and had a radius of 0.32 cm. The tally multiplier was for ²³⁵U. It can be seen in Tables B.4-1 and B.4-2 and in Figures B.4-1 and B.4-2 that the calculated values deviated greatly from the expected values between 25 and 35 cm above the bottom of the core. The cause of this large calculational bias is unknown and is not seen in SCCA-FUND-EXP-001 which is highly correlated to this experiment. The tally multiplier was for a ²³⁵U fission cross section.

Space Reactor-SPACE

Table B.4-1. Relative Axial Distribution of the Induced Fission in a Uranium Fission Counter, Detailed Model.

Distance from	Indu	uced	Fission ^{(a}) (Arbitra	ary U	nits)		C/E		
Bottom of Core ^(a)	Expec	ted V	/alues	Calcul	ated	Values	(C-E)/E ^(b)	R	Latio	(b)
5.0	0.12	±	0.01	0.097	\pm	0.000	-19.2%	0.81	±	0.07
7.5	0.09	±	0.01	0.090	±	0.000	-0.5%	0.99	±	0.09
10.0	0.12	±	0.01	0.089	±	0.000	-26.0%	0.74	±	0.06
12.6	0.10	±	0.01	0.090	±	0.000	-11.0%	0.89	±	0.08
15.1	0.11	±	0.01	0.090	±	0.000	-19.1%	0.81	±	0.07
17.7	0.11	±	0.01	0.089	±	0.000	-19.6%	0.80	±	0.07
20.2	0.10	±	0.01	0.088	±	0.000	-12.5%	0.87	±	0.08
22.8	0.10	±	0.01	0.088	±	0.000	-12.8%	0.87	±	0.08
25.3	0.13	±	0.01	0.092	±	0.000	-29.6%	0.70	±	0.06
27.8	0.40	±	0.03	0.122	±	0.000	-69.5%	0.31	±	0.02
30.4	0.67	±	0.05	0.310	±	0.000	-53.8%	0.46	±	0.03
32.9	0.88	±	0.06	0.580	±	0.000	-34.1%	0.66	±	0.04
35.4	0.99	±	0.07	0.809	±	0.000	-18.3%	0.82	±	0.05
39.7	0.94	±	0.05	0.999	±	0.000	6.3%	1.06	±	0.05
40.5	1.01	±	0.07	1.005	±	0.000	-0.4%	1.00	±	0.07
42.8	1.02	±	0.07	0.977	±	0.000	-4.0%	0.96	±	0.07
45.8	0.87	±	0.06	0.850	±	0.000	-2.0%	0.98	±	0.07
48.1	0.69	±	0.05	0.705	±	0.000	2.8%	1.03	±	0.07
50.7	0.43	±	0.03	0.504	±	0.000	16.0%	1.16	±	0.08
53.2	0.22	±	0.02	0.282	±	0.000	27.4%	1.27	±	0.09

⁽a) Measured from bottom of fuel tube. Measurements above the top of the core region are highlighted.

⁽b) "E" is the expected value. "C" is the calculated value.

Figure B.4-1. Relative Axial Uranium Fission Counter Count Rate Distribution, Detailed Model.

Table B.4-2. Relative Axial Distribution of the Induced Fission in a Uranium Fission Counter, Simple Model.

Distance from	Indi	ıced	Fission ^{(a}	ı) (Arbitra	arv I	(nits)			C/E	
Distance from Bottom of Core ^(a)	Expec					Values	(C-E)/E ^(b)	F	C/E Ratio	
5.0	0.12	±	0.01	0.094	±	0.000	-19.8%	0.83	±	0.07
7.5	0.12	±	0.01	0.094		0.000	-0.6%	1.04		0.10
10.0	0.12	±	0.01	0.086	±	0.000	-26.9%	0.76		0.06
12.6	0.10		0.01	0.086		0.000	-11.5%	0.92	±	0.08
15.1	0.11	±	0.01	0.086	±	0.000	-19.8%	0.84	±	0.07
17.7	0.11	±	0.01	0.085	±	0.000	-20.3%	0.83	±	0.07
20.2	0.10	±	0.01	0.084	±	0.000	-13.0%	0.91	±	0.08
22.8	0.10	±	0.01	0.084	±	0.000	-13.3%	0.90	±	0.08
25.3	0.13	±	0.01	0.089	±	0.000	-30.4%	0.72	±	0.06
27.8	0.40	±	0.03	0.119	±	0.000	-70.1%	0.31	±	0.02
30.4	0.68	±	0.05	0.314	±	0.000	-53.5%	0.46	±	0.03
32.9	0.89	±	0.06	0.590	±	0.000	-33.8%	0.65	±	0.04
35.4	1.00	±	0.07	0.815	±	0.000	-18.1%	0.81	±	0.05
39.7	0.94	±	0.05	0.998	±	0.000	6.3%	1.06	±	0.05
40.5	1.01	±	0.07	1.003	±	0.000	-0.4%	1.00	±	0.07
42.8	1.01	±	0.07	0.971	±	0.000	-4.1%	0.96	±	0.07
45.8	0.86	±	0.06	0.845	±	0.000	-2.0%	0.99	±	0.07
48.1	0.68	±	0.05	0.698	±	0.000	2.8%	1.04	±	0.07
50.7	0.43	±	0.03	0.500	±	0.000	16.1%	1.17	±	0.08
53.2	0.22	±	0.02	0.279	±	0.000	27.8%	1.29	±	0.10

⁽a) Measured from bottom of fuel tube. Measurements above the top of the core region are highlighted.

⁽b) "E" is the expected value. "C" is the calculated value.

Figure B.4-2. Relative Axial Uranium Fission Counter Count Rate Distribution, Simple Model.